摘要:
The present invention is a method and system for detecting an abnormal event for process units of a Polymers Unit. The method compares the operation of the process units to statistical, engineering or heuristic models. The statistical models are developed by principle components analysis of the normal operation for these units. In addition, the engineering models are based on correlation analysis between variables or simple engineering calculations. If the difference between the operation of a process unit and the normal model result indicates an abnormal condition, then the cause of the abnormal condition is determined and corrected.
摘要:
The present invention is a method for detecting an abnormal event for process units of a Delayed Coking Unit. The method compares the operation of the process units to statistical and engineering models. The statistical models are developed by principal components analysis of the normal operation for these units. The engineering models are based statistical and correlation analysis between variables. If the difference between the operation of a process unit and the normal model result indicates an abnormal condition, then the cause of the abnormal condition is determined and corrected.
摘要:
The present invention is a method for detecting an abnormal event for process units of a hydrocracking unit. The method compares the operation of the process units to a model developed by principle components analysis of normal operation for these units. If the difference between the operation of a process unit and the normal operation indicates an abnormal condition, then the cause of the abnormal condition is determined and corrected.
摘要:
The present invention is a method for detecting an abnormal event for process units of a Fluidized Catalytic Cracking Unit. The method compares the operation of the process units to a statistical and engineering models. The statistical models are developed by principle components analysis of the normal operation for these units. In addition, the engineering models are based on partial least squares analysis and correlation analysis between variables. If the difference between the operation of a process unit and the normal model result indicates an abnormal condition, then the cause of the abnormal condition is determined and corrected.
摘要:
Thousands of process and equipment measurements are gathered by the modern digital process control systems that are deployed in refineries and chemical plants. Several years of these data are historized in databases for analysis and reporting. These databases can be mined for the data patterns that occur during normal operation and those patterns used to determine when the process is behaving abnormally.These normal operating patterns are represented by sets of models. These models include simple engineering equations, which express known relationships that should be true during normal operations and multivariate statistical models based on a variation of principle component analysis. Equipment and process problems can be detected by comparing the data gathered on a minute by minute basis to predictions from these models of normal operation. The deviation between the expected pattern in the process operating data and the actual data pattern are interpreted by fuzzy Petri nets to determine the normality of the process operations. This is then used to help the operator localize and diagnose the root cause of the problem.
摘要:
The present invention is a method for detecting an abnormal event for process units of an ethylene processing system. The method compares the operation of the process units to a model developed by principal components analysis of normal operation for these units. If the difference between the operation of a process unit and the normal operation indicates an abnormal condition, then the cause of the abnormal condition is determined and corrected.
摘要:
The solution from a multivariable predictive controller (MPC) is analyzed and described by providing quantitative input to operators regarding the effect of changing controller limits on the MPC controller solution. This information allows a rapid operator response to changes and more optimal process operation.
摘要:
The solution from a multivariable predictive controller (MPC) is analyzed and described by providing quantitative input to operators regarding the effect of changing controller limits on the MPC controller solution. This information allows a rapid operator response to changes and more optimal process operation.
摘要:
The present invention is a method for developing a system for detecting an abnormal on-line analysis or laboratory measurement and for predicting an abnormal quality excursion due to an abnormal process condition.
摘要:
The present invention is a method and system for detecting an abnormal on-line analysis or laboratory measurement and for predicting an abnormal quality excursion due to an abnormal process condition.