摘要:
The SIP server can be comprised of an engine tier and a state tier distributed on a cluster network environment. The engine tier can send and receive messages and execute various processes. The state tier can maintain in-memory state data associated with various SIP sessions. For example, the state tier can store various long lived data objects and the engine tier can contain short lived data objects. The state data can be maintained in partitions comprised of state replicas. A load balancer can receive incoming message traffic and distribute it to the engine tier for processing. When processing a message, the engine can pull state data objects from the state tier, use the objects and push them back to the state tier after processing is complete. If one state replica is unavailable, such as during garbage collection, the engine can retrieve the objects from another replica in the partition.
摘要:
The SIP server can be comprised of an engine tier and a state tier distributed on a cluster network. Engine nodes in the engine tier can process SIP messages and can read/write state information from/to the state tier. State tier can maintain state information in a set of partitions of one or more replicas which contain duplicate information. The engine nodes can be adapted to detect and report replica failures and the replicas can in turn be adapted to detect and report engine node failures. Replicas can detect faults with an engine node if the engine node fails to poll the replica for a specified period of time and can then report the failure. The engine node can detect failures of a replica when reading or writing state information and can report the failure to another replica, which can be responsible for updating the partition view to exclude dead replicas.
摘要:
The SIP server can be comprised of an engine tier and a state tier distributed on a cluster network. Engine nodes in the engine tier can process SIP messages and can read/write state information from/to the state tier. State tier can maintain state information in a set of partitions of one or more replicas which contain duplicate information. The engine nodes can be adapted to detect and report replica failures and the replicas can in turn be adapted to detect and report engine node failures. Replicas can detect faults with an engine node if the engine node fails to poll the replica for a specified period of time and can then report the failure. The engine node can detect failures of a replica when reading or writing state information and can report the failure to another replica, which can be responsible for updating the partition view to exclude dead replicas.
摘要:
Systems and methods are provided for improving latency during message processing in a network environment via the use of SIP server architecture. The SIP server can be comprised of an engine tier and a state tier distributed on a cluster network. The engine tier can send and receive messages and execute various processes. The state tier can maintain in-memory state data associated with various SIP sessions. The state tier can store various long lived data objects and the engine tier can contain short lived data objects. The state data can be maintained in partitions comprised of state replicas. When processing messages, the engine can pull state data objects from the state tier, use the objects and push them back to the state tier after processing is complete. If one state replica is unavailable, such as during garbage collection, the engine can retrieve the objects from another replica in the partition.
摘要:
Systems and methods are provided for improving latency during message processing in a network environment via the use of SIP server architecture. The SIP server can be comprised of an engine tier and a state tier distributed on a cluster network. The engine tier can send and receive messages and execute various processes. The state tier can maintain in-memory state data associated with various SIP sessions. The state tier can store various long lived data objects and the engine tier can contain short lived data objects. The state data can be maintained in partitions comprised of state replicas. When processing messages, the engine can pull state data objects from the state tier, use the objects and push them back to the state tier after processing is complete. If one state replica is unavailable, such as during garbage collection, the engine can retrieve the objects from another replica in the partition.
摘要:
A SIP server can be distributed over a cluster network and handle the processing of various SIP communications. A Diameter protocol web application can be deployed on the engine tier of the SIP server for enabling communication between the SIP server and an HSS. A profile service API can be provided that allows applications running on the SIP server to access user profile data stored on the HSS. The applications can also be allowed to subscribe to notifications about changes to the user profile data on the HSS. An Sh interface provider can be deployed on the SIP server for generating and responding to Diameter command codes. SIP servlets can access the user profile data in the form of an XML document.
摘要:
A SIP server can be distributed over a cluster network and handle the processing of various SIP communications. A Diameter protocol web application can be deployed on the engine tier of the SIP server for enabling communication between the SIP server and an HSS. A profile service API can be provided that allows applications running on the SIP server to access user profile data stored on the HSS. The applications can also be allowed to subscribe to notifications about changes to the user profile data on the HSS. An Sh interface provider can be deployed on the SIP server for generating and responding to Diameter command codes. SIP servlets can access the user profile data in the form of an XML document.
摘要:
The SIP server can be comprised of an engine tier and a state tier distributed on a cluster network environment. The engine tier can send, receive and process various messages. The state tier can maintain in-memory state data associated with various SIP sessions. A near cache can be residing on the engine tier in order to maintain a local copy of a portion of the state data contained in the state tier. Various engines in the engine tier can determine whether the near cache contains a current version of the state needed to process a message before retrieving the state data from the state tier. Accessing the state from the near cache can save on various latency costs such as serialization, transport and deserialization of state to and from the state tier. Furthermore, the near cache and JVM can be tuned to further improve performance of the SIP server.
摘要:
The SIP server can be comprised of an engine tier and a state tier distributed on a cluster network environment. The engine tier can send, receive and process various messages. The state tier can maintain in-memory state data associated with various SIP sessions. A near cache can be residing on the engine tier in order to maintain a local copy of a portion of the state data contained in the state tier. Various engines in the engine tier can determine whether the near cache contains a current version of the state needed to process a message before retrieving the state data from the state tier. Accessing the state from the near cache can save on various latency costs such as serialization, transport and deserialization of state to and from the state tier. Furthermore, the near cache and JVM can be tuned to further improve performance of the SIP server.
摘要:
The SIP server deployment can be comprised of an engine tier that provides high throughput processing and a state tier that maintains SIP state data in a set of partitions and replicas. Two sites of SIP server deployments can be configured, each being remotely located with respect to the other. A primary site can process various SIP transactions and communications and upon determining a transaction boundary, replicate the state data associated with the transaction being processed, to a secondary site. Engines in the primary site can generate hints for the state replicas which can be in turn responsible for replicating the SIP session state. The replicas can choose to follow or disregard the generated hints. Upon failure of the primary site, calls can be routed from the failed primary site to the secondary site for processing. Similarly, upon recovery, the calls can be re-routed back to the primary site.