Abstract:
Systems and methods for processing data from a motion sensor to detect intentional movements of a device are provided. An electronic device having a motion sensor may process motion sensor data along one or more dimensions to generate an acceleration value representative of the movement of the electronic device. The electronic device may then determine whether the acceleration value changes from less than a low threshold, to more than a high threshold, and again to less than the low threshold within a particular amount of time, reflecting an intentional movement of the electronic device by the user. In response to determining that the acceleration value is associated with an intentional movement of the electronic device, the electronic device may perform a particular event or operation. For example, in response to detecting that an electronic device has been shaken, the electronic device may shuffle a media playlist.
Abstract:
Touch and hover switching is disclosed. A touch and hover sensing device can switch between a touch mode and a hover mode. During a touch mode, the device can be switched to sense one or more objects touching the device. During a hover mode, the device can be switched to sense one or more objects hovering over the device. The device can include a panel having multiple sensors for sensing a touching object and/or a hovering object and a touch and hover control system for switching the device between the touch and hover modes. The device's touch and hover control system can include a touch sensing circuit for coupling to the sensors to measure a capacitance indicative of a touching object during the touch mode, a hover sensing circuit for coupling to the sensors to measure a capacitance indicative of a hovering object during the hover mode, and a switching mechanism for switching the sensors to couple to either the touch sensing circuit or the hover sensing circuit. The device can switch modes based on a condition of the device, such as an expiration of a timer or a relative distance of an object from the panel.
Abstract:
Detecting a signal from a touch and hover sensing device, in which the signal can be indicative of concurrent touch events and/or hover events, is disclosed. A touch event can indicate an object touching the device. A hover event can indicate an object hovering over the device. The touch and hover sensing device can ensure that a desired hover event is not masked by an incidental touch event, e.g., a hand holding the device, by compensating for the touch event in the detected signal that represents both events. Conversely, when both a hover event and a touch event are desired, the touch and hover sensing device can ensure that both events are detected by adjusting the device sensors and/or the detected signal. The touch and hover sensing device can also detect concurrent hover events by identifying multiple peaks in the detected signal, each peak corresponding to a position of a hovering object.
Abstract:
Systems and methods for processing data from a motion sensor to detect intentional movements of a device are provided. An electronic device having a motion sensor may process motion sensor data along one or more dimensions to generate an acceleration value representative of the movement of the electronic device. The electronic device may then determine whether the acceleration value changes from less than a low threshold, to more than a high threshold, and again to less than the low threshold within a particular amount of time, reflecting an intentional movement of the electronic device by the user. In response to determining that the acceleration value is associated with an intentional movement of the electronic device, the electronic device may perform a particular event or operation. For example, in response to detecting that an electronic device has been shaken, the electronic device may shuffle a media playlist.
Abstract:
Systems and methods for processing data from a motion sensor to detect intentional movements of a device are provided. An electronic device having a motion sensor may process motion sensor data along one or more dimensions to generate an acceleration value representative of the movement of the electronic device. The electronic device may then determine whether the acceleration value changes from less than a low threshold, to more than a high threshold, and again to less than the low threshold within a particular amount of time, reflecting an intentional movement of the electronic device by the user. In response to determining that the acceleration value is associated with an intentional movement of the electronic device, the electronic device may perform a particular event or operation. For example, in response to detecting that an electronic device has been shaken, the electronic device may shuffle a media playlist.
Abstract:
A multi-dimensional scroll wheel is disclosed. Scroll wheel circuitry is provided to detect input gestures that traverse the center of the scroll wheel and to detect multi-touch input. The scroll wheel can include a first plurality of sensor elements arranged in a first closed loop and a second plurality of sensor elements arranged in a second closed loop, the first and second closed loops being concentrically arranged about the center of the scroll wheel.
Abstract:
An intelligent stylus is disclosed. The stylus can provide a stylus condition in addition to a touch input. The stylus architecture can include multiple sensors to sense information indicative of the stylus condition, a microcontroller to determine the stylus condition based on the sensed information, and a transmitter to transmit the determined condition to a corresponding touch sensitive device so as to cause some action based on the condition.
Abstract:
Compensation for sensors in a touch and hover sensing device is disclosed. Compensation can be for sensor resistance and/or sensor sensitivity variation that can adversely affect touch and hover measurements at the sensors. To compensate for sensor resistance, the device can gang adjacent sensors together so as to reduce the overall resistance of the sensors. In addition or alternatively, the device can drive the sensors with voltages from multiple directions so as to reduce the effects of the sensors' resistance. To compensate for sensor sensitivity variation (generally at issue for hover measurements), the device can apply a gain factor to the measurements, where the gain factor is a function of the sensor location, so as to reduce the sensitivity variation at different sensor locations on the device.
Abstract:
Systems and methods for processing data from a motion sensor to detect intentional movements of a device are provided. An electronic device having a motion sensor may process motion sensor data along one or more dimensions to generate an acceleration value representative of the movement of the electronic device. The electronic device may then determine whether the acceleration value changes from less than a low threshold, to more than a high threshold, and again to less than the low threshold within a particular amount of time, reflecting an intentional movement of the electronic device by the user. In response to determining that the acceleration value is associated with an intentional movement of the electronic device, the electronic device may perform a particular event or operation. For example, in response to detecting that an electronic device has been shaken, the electronic device may shuffle a media playlist.