摘要:
In some embodiments, a method for compensating for lens motion includes estimating a starting position of a lens assembly associated with captured pixel data. The captured pixel data is captured from an image sensor. In some embodiments, the method further includes calculating from the starting position and position data received from the one or more position sensors lens movement associated with the captured pixel data. The lens movement is mapped into pixel movement associated with the captured pixel data. A transform matrix is adjusted to reflect at least the pixel movement. A limit factor associated with the position data is calculated. The captured pixel data is recalculated using the transform matrix and the limit factor.
摘要:
Techniques to improve a digital image capture device's ability to stabilize a video stream are presented. According to some embodiments, improved stabilization of captured video frames is provided by intelligently harnessing the complementary effects of both optical image stabilization (OIS) and electronic image stabilization (EIS). In particular, OIS may be used to remove intra-frame motion blur that is typically lower in amplitude and dominates with longer integration times, while EIS may be used to remove residual unwanted frame-to-frame motion that is typically larger in amplitude. The techniques disclosed herein may also leverage information provided from the image capture device's OIS system to perform improved motion blur-aware video stabilization strength modulation, which permits better video stabilization performance in low light conditions, where integration times tend to be longer, thus leading to a greater amount of motion blurring in the output stabilized video.
摘要:
Techniques to permit a digital image capture device to stabilize a video stream in real-time (during video capture operations) are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. (Capturing a larger image than is displayed creates a buffer of pixels around the edge of an image; overscan is the term given to this buffer of pixels.) More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. This look-ahead and look-behind capability permits a smoother stabilizing regime with fewer abrupt adjustments.
摘要:
A pseudo-three dimensional image may be created from a two dimensional image by segmenting the two dimensional image, adjusting the scale of individual segments of the two dimensional image, then superimposing the scaled segment as layers of the pseudo-three dimensional image. By detecting changes in relative orientation of an observer and a programmable device displaying the pseudo-three dimensional image, then translating the scaled segments according to the orientation change, parallax effects may be simulated, enhancing the view of the pseudo-three dimensional image.
摘要:
Techniques to permit a digital image capture device to stabilize a video stream in real-time (during video capture operations) are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. (Capturing a larger image than is displayed creates a buffer of pixels around the edge of an image; overscan is the term given to this buffer of pixels.) More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. This look-ahead and look-behind capability permits a smoother stabilizing regime with fewer abrupt adjustments.
摘要:
Techniques to permit a digital image capture device to stabilize a video stream in real-time (during video capture operations) are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. (Capturing a larger image than is displayed creates a buffer of pixels around the edge of an image; overscan is the term given to this buffer of pixels.) More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. This look-ahead and look-behind capability permits a smoother stabilizing regime with fewer abrupt adjustments.
摘要:
In some embodiments, a method for compensating for lens motion includes estimating a starting position of a lens assembly associated with captured pixel data. The captured pixel data is captured from an image sensor. In some embodiments, the method further includes calculating from the starting position and position data received from the one or more position sensors lens movement associated with the captured pixel data. The lens movement is mapped into pixel movement associated with the captured pixel data. A transform matrix is adjusted to reflect at least the pixel movement. A limit factor associated with the position data is calculated. The captured pixel data is recalculated using the transform matrix and the limit factor.
摘要:
In a portable camera device, a variable voltage regulator produces a power supply voltage of a VCM driver circuit that conducts the coil current of a VCM actuator as part of an optical image stabilization (OIS) mechanism. A processor signals the variable voltage regulator to increase the power supply voltage when the camera device transitions from still capture mode or preview mode to video capture mode, where the increase causes an increase in stroke of the VCM OIS actuator. Other embodiments are also described and claimed.
摘要:
Techniques to permit a digital image capture device to stabilize a video stream in real-time (during video capture operations) are presented. In general, techniques are disclosed for stabilizing video images using an overscan region and a look-ahead technique enabled by buffering a number of video input frames before generating a first stabilized video output frame. (Capturing a larger image than is displayed creates a buffer of pixels around the edge of an image; overscan is the term given to this buffer of pixels.) More particularly, techniques are disclosed for buffering an initial number of input frames so that a “current” frame can use motion data from both “past” and “future” frames to adjust the strength of a stabilization metric value so as to keep the current frame within its overscan. This look-ahead and look-behind capability permits a smoother stabilizing regime with fewer abrupt adjustments.
摘要:
Techniques to improve a digital image capture device's ability to stabilize a video stream are presented. According to some embodiments, improved stabilization of captured video frames is provided by intelligently harnessing the complementary effects of both optical image stabilization (OIS) and electronic image stabilization (EIS). In particular, OIS may be used to remove intra-frame motion blur that is typically lower in amplitude and dominates with longer integration times, while EIS may be used to remove residual unwanted frame-to-frame motion that is typically larger in amplitude. The techniques disclosed herein may also leverage information provided from the image capture device's OIS system to perform improved motion blur-aware video stabilization strength modulation, which permits better video stabilization performance in low light conditions, where integration times tend to be longer, thus leading to a greater amount of motion blurring in the output stabilized video.