Abstract:
A compiler and library provide the ability to compile a programming language according to a defined language model into a programming language independent, machine independent intermediate representation, for conversion into an executable on a target programmable device. The language model allows writing programs that perform data-parallel graphics and non-graphics tasks.
Abstract:
A system decouples the source code language from the eventual execution environment by compiling the source code language into a unified intermediate representation that conforms to a language model allowing both parallel graphical operations and parallel general-purpose computational operations. The intermediate representation may then be distributed to end-user computers, where an embedded compiler can compile the intermediate representation into an executable binary targeted for the CPUs and GPUs available in that end-user device. The intermediate representation is sufficient to define both graphics and non-graphics compute kernels and shaders. At install-time or later, the intermediate representation file may be compiled for the specific target hardware of the given end-user computing system. The CPU or other host device in the given computing system may compile the intermediate representation file to generate an instruction set architecture binary for the hardware target, such as a GPU, within the system.
Abstract:
A system decouples the source code language from the eventual execution environment by compiling the source code language into a unified intermediate representation that conforms to a language model allowing both parallel graphical operations and parallel general-purpose computational operations. The intermediate representation may then be distributed to end-user computers, where an embedded compiler can compile the intermediate representation into an executable binary targeted for the CPUs and GPUs available in that end-user device. The intermediate representation is sufficient to define both graphics and non-graphics compute kernels and shaders. At install-time or later, the intermediate representation file may be compiled for the specific target hardware of the given end-user computing system. The CPU or other host device in the given computing system may compile the intermediate representation file to generate an instruction set architecture binary for the hardware target, such as a GPU, within the system.
Abstract:
A system decouples the source code language from the eventual execution environment by compiling the source code language into a unified intermediate representation that conforms to a language model allowing both parallel graphical operations and parallel general-purpose computational operations. The intermediate representation may then be distributed to end-user computers, where an embedded compiler can compile the intermediate representation into an executable binary targeted for the CPUs and GPUs available in that end-user device. The intermediate representation is sufficient to define both graphics and non-graphics compute kernels and shaders. At install-time or later, the intermediate representation file may be compiled for the specific target hardware of the given end-user computing system. The CPU or other host device in the given computing system may compile the intermediate representation file to generate an instruction set architecture binary for the hardware target, such as a GPU, within the system.
Abstract:
A system decouples the source code language from the eventual execution environment by compiling the source code language into a unified intermediate representation that conforms to a language model allowing both parallel graphical operations and parallel general-purpose computational operations. The intermediate representation may then be distributed to end-user computers, where an embedded compiler can compile the intermediate representation into an executable binary targeted for the CPUs and GPUs available in that end-user device. The intermediate representation is sufficient to define both graphics and non-graphics compute kernels and shaders. At install-time or later, the intermediate representation file may be compiled for the specific target hardware of the given end-user computing system. The CPU or other host device in the given computing system may compile the intermediate representation file to generate an instruction set architecture binary for the hardware target, such as a GPU, within the system.
Abstract:
The disclosed concepts provide a method to generate and use a compound shader object. A compound shader object includes a shader's intermediate representation (IR) and one or more binary modules; each binary module configured to execute on one type of graphics processing unit (GPU) with a specific input state. One method includes receiving, through a public application programming interface (API), a request to execute a shader from an user-level application. At the framework level, if the request corresponds to one of the prior compiled binary modules, that module may be passed to a GPU for immediate execution via a system private interface. If the request does not correspond to one of the binary modules, the shader's IR module may returned to the requesting user-level application (which module would then have to be compiled before it may be sent to the GPU).
Abstract:
A compiler and library provide the ability to compile a programming language according to a defined language model into a programming language independent, machine independent intermediate representation, for conversion into an executable on a target programmable device. The language model allows writing programs that perform data-parallel graphics and non-graphics tasks.
Abstract:
The disclosed concepts provide a method to generate and use a compound shader object. A compound shader object includes a shader's intermediate representation (IR) and one or more binary modules; each binary module configured to execute on one type of graphics processing unit (GPU) with a specific input state. One method includes receiving, through a public application programming interface (API), a request to execute a shader from an user-level application. At the framework level, if the request corresponds to one of the prior compiled binary modules, that module may be passed to a GPU for immediate execution via a system private interface. If the request does not correspond to one of the binary modules, the shader's IR module may returned to the requesting user-level application (which module would then have to be compiled before it may be sent to the GPU).
Abstract:
A compiler and library provide the ability to compile a programming language according to a defined language model into a programming language independent, machine independent intermediate representation, for conversion into an executable on a target programmable device. The language model allows writing programs that perform data-parallel graphics and non-graphics tasks.
Abstract:
A compiler and library provide the ability to compile a programming language according to a defined language model into a programming language independent, machine independent intermediate representation, for conversion into an executable on a target programmable device. The language model allows writing programs that perform data-parallel graphics and non-graphics tasks.