Abstract:
A system and method is described for estimating residual echo and performing residual echo suppression on a signal. In particular, the system and method described herein: 1) provides a more accurate coherence-based approach where the sub-band nature of coherence-based residual echo estimation is leveraged using sub-band-based coherence measures and upper-bound envelopes to guide residual echo estimates; 2) provides joint estimation of the residual echo and a background stationary noise-floor; 3) provides more accurate residual echo estimation by combining the above two measures with information on near-end activity to selectively adjust the residual-echo estimation in sub-bands; and 4) provides improved control of near-end distortion by leveraging the noise-floor estimate and the internally calculated signal-to-echo ratios as additional guides/limits to help balance, flexibly, and as needed, near-end distortion with residual echo suppression. The resultant residual echo suppressor design provides significant improvement in both residual echo suppression and background noise preservation.
Abstract:
To address issues with present echo gate control, a method and apparatus for more intelligently operating an echo gate is described herein. In particular, the decision of whether to mute an uplink signal, or not, is formulated herein as primarily a perceptual decision based on an appropriate analysis of the perceptual interaction of the current residual echo and the current near-end signal(s). By doing so, the application of muting through an echo gate may be minimized and/or more appropriately engaged. This will lead to fewer dropouts and muting of speech onsets and offsets 1) during periods such as double-talk or 2) during periods of downlink playback in the presence of low near-end signal levels, two cases of particular importance.
Abstract:
To address issues with present echo gate control, a method and apparatus for more intelligently operating an echo gate is described herein. In particular, the decision of whether to mute an uplink signal, or not, is formulated herein as primarily a perceptual decision based on an appropriate analysis of the perceptual interaction of the current residual echo and the current near-end signal(s). By doing so, the application of muting through an echo gate may be minimized and/or more appropriately engaged. This will lead to fewer dropouts and muting of speech onsets and offsets 1) during periods such as double-talk or 2) during periods of downlink playback in the presence of low near-end signal levels, two cases of particular importance.
Abstract:
A system and method is described for estimating residual echo and performing residual echo suppression on a signal. In particular, the system and method described herein: 1) provides a more accurate coherence-based approach where the sub-band nature of coherence-based residual echo estimation is leveraged using sub-band-based coherence measures and upper-bound envelopes to guide residual echo estimates; 2) provides joint estimation of the residual echo and a background stationary noise-floor; 3) provides more accurate residual echo estimation by combining the above two measures with information on near-end activity to selectively adjust the residual-echo estimation in sub-bands; and 4) provides improved control of near-end distortion by leveraging the noise-floor estimate and the internally calculated signal-to-echo ratios as additional guides/limits to help balance, flexibly, and as needed, near-end distortion with residual echo suppression. The resultant residual echo suppressor design provides significant improvement in both residual echo suppression and background noise preservation.
Abstract:
A conference system is described that transfers audio signals/streams between a near-end computing system and a far-end computing system. The near-end system may produce a plurality of microphone beams capturing various areas of the near-end. The beams may include primary beams directed at targets of interest and secondary beams focused on sound sources away from the targets of interest. The secondary beams may be selectively used as de-correlating signals for de-correlating the primary beams. The mixing may be made using a scale factor to produce a new primary beam. When the new beam does not provide significant de-correlation and the original raw primary beams are already sufficiently de-correlated, the original raw primary beams may be transmitted to the far-end system.