Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture, but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
Abstract:
A context switching method for video encoders that enables higher priority video streams to interrupt lower priority video streams. A high priority frame may be received for processing while another frame is being processed. The pipeline may be signaled to perform a context stop for the current frame. The pipeline stops processing the current frame at an appropriate place, and propagates the stop through the stages of the pipeline and to a transcoder through DMA. The stopping location is recorded. The video encoder may then process the higher-priority frame. When done, a context restart is performed and the pipeline resumes processing the lower-priority frame beginning at the recorded location. The transcoder may process data for the interrupted frame while the higher-priority frame is being processed in the pipeline, and similarly the pipeline may begin processing the lower-priority frame after the context restart while the transcoder completes processing the higher-priority frame.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture, but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
Abstract:
A context switching method for video encoders that enables higher priority video streams to interrupt lower priority video streams. A high priority frame may be received for processing while another frame is being processed. The pipeline may be signaled to perform a context stop for the current frame. The pipeline stops processing the current frame at an appropriate place, and propagates the stop through the stages of the pipeline and to a transcoder through DMA. The stopping location is recorded. The video encoder may then process the higher-priority frame. When done, a context restart is performed and the pipeline resumes processing the lower-priority frame beginning at the recorded location. The transcoder may process data for the interrupted frame while the higher-priority frame is being processed in the pipeline, and similarly the pipeline may begin processing the lower-priority frame after the context restart while the transcoder completes processing the higher-priority frame.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture, but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture, but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture, but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.