Abstract:
Embodiments disclosed herein include methods for reducing or eliminating the impact of tuning disturbances during prediction of lamp failure. In one embodiment, the method comprises monitoring data of a lamp module for a process chamber using one or more physical sensors disposed at different locations within the lamp module, creating virtual sensors based on monitoring data of the lamp module, and providing a prediction model for the lamp module using the virtual sensors as inputs.
Abstract:
A method is provided for determining two or more context types having an associated fault to be modeled by the same multivariate model. The method includes selecting a fault and selecting two or more context types associated with the fault. The method further includes accessing data stored for the selected context types. The method further includes generating rankings of process data tags for each selected context type. Each ranking includes process data tags ranked according to relative contributions of each process data tag in the ranking to the fault. The method further includes classifying the context types into one or more classes based on the process data tags included in each ranking. The one or more classes include a first class of the context types. The method further includes deploying a multivariate model operable to monitor processing equipment for the selected fault for the first class of context types.