Abstract:
This invention discloses electron field-emission cathodes with enhanced performance for vacuum and gaseous electronics and methods of fabricating these cathodes. The cathodes of the present invention comprise nanomaterials, such as carbon nanotubes, and metals or metal-containing compounds or alloys. In gas discharge devices, the present field-emission materials or cathodes work at room temperature and have much lower breakdown voltage or cathode fall (e.g.nullthe voltage drop between the plasma discharge region and the cathode) than conventional cathodes. The invention enables the developing of gas discharge devices with greatly enhanced energy efficiency and operating lifetime.
Abstract:
A method of forming an electron emitter includes the steps of: (i) forming a nanostructure-containing material; (ii) forming a mixture of nanostructure-containing material and a matrix material; (iii) depositing a layer of the mixture onto at least a portion of at least one surface of a substrate by electrophoretic deposition; (iv) sintering or melting the layer thereby forming a composite; and (v) electrochemically etching the composite to remove matrix material from a surface thereof, thereby exposing nanostructure-containing material.