Abstract:
A method for providing safety protection in an additive manufacturing apparatus for forming a three-dimensional article through successive fusion of parts of a powder bed in an enclosable chamber, which parts corresponds to successive cross sections of the three-dimensional article is provided. The method comprising the steps of providing a position detecting device connected to a control unit to detect whether a foreign matter is within the enclosable chamber. The method may also include, upon detecting that the foreign matter is within the enclosable chamber, either (1) switching off, via the control unit, at least one device associated with the additive manufacturing apparatus; or (2) providing power to a powder suction device. Associated safety protection devices are also provided.
Abstract:
A method for providing safety protection in an additive manufacturing apparatus for forming a three-dimensional article through successive fusion of parts of a powder bed in an enclosable chamber, which parts corresponds to successive cross sections of the three-dimensional article is provided. The method comprising the steps of providing a position detecting device connected to a control unit to detect whether a foreign matter is within the enclosable chamber. The method may also include, upon detecting that the foreign matter is within the enclosable chamber, either (1) switching off, via the control unit, at least one device associated with the additive manufacturing apparatus; or (2) providing power to a powder suction device. Associated safety protection devices are also provided.
Abstract:
An apparatus for forming at least one three-dimensional article by fusing parts of a powder bed layer-wise. The apparatus comprising a powder distributor and an energy beam for fusing the powder layer. Said powder distributor comprises a first part being an elongated rod provided movable at a predetermined distance above the powder bed and with its central axis in parallel with a top surface of said work table and second part being a metal foil having at least a first and a second opposite edge portions. Said metal foil is provided between said elongated rod and said work table, said first and second opposite edge portions are attached to said elongated rod so that a distance between said first and second edge portions is smaller than the distance between said first and second edge portions of said metal foil when said metal foil is in a flat position.
Abstract:
Various embodiments of the present invention relate to a method for forming at a three-dimensional article through successively depositing individual layers of powder material that are fused together with at least one energy beam so as to form the article, said method comprising the steps of generating a model of said three-dimensional article; applying a first powder layer on a work table; directing said at least one energy beam from at least one energy beam source over said work table causing said first powder layer to fuse in first selected locations according to said model to form a first cross section of said three-dimensional article; introducing a predetermined pattern laterally separated from said first cross section for reducing thickness variations in a powder layer provided on top of said first cross section.
Abstract:
An apparatus for forming at least one three-dimensional article by fusing parts of a powder bed layer-wise. The apparatus comprising a powder distributor and an energy beam for fusing the powder layer. Said powder distributor comprises a first part being an elongated rod provided movable at a predetermined distance above the powder bed and with its central axis in parallel with a top surface of said work table and second part being a metal foil having at least a first and a second opposite edge portions. Said metal foil is provided between said elongated rod and said work table, said first and second opposite edge portions are attached to said elongated rod so that a distance between said first and second edge portions is smaller than the distance between said first and second edge portions of said metal foil when said metal foil is in a flat position.