Methods, systems, and media for discriminating and generating translated images

    公开(公告)号:US11164021B2

    公开(公告)日:2021-11-02

    申请号:US16875680

    申请日:2020-05-15

    Abstract: Methods, systems, and media for discriminating and generating translated images are provided. In some embodiments, the method comprises: identifying a set of training images, wherein each image is associated with at least one domain from a plurality of domains; training a generator network to generate: i) a first fake image that is associated with a first domain; and ii) a second fake image that is associated with a second domain; training a discriminator network, using as inputs to the discriminator network: i) an image from the set of training images; ii) the first fake image; and iii) the second fake image; and using the generator network to generate, for an image not included in the set of training images at least one of: i) a third fake image that is associated with the first domain; and ii) a fourth fake image that is associated with the second domain.

    SYSTEMS, METHODS, AND APPARATUSES FOR IMPLEMENTING SYSTEMATIC BENCHMARKING ANALYSIS TO IMPROVE TRANSFER LEARNING FOR MEDICAL IMAGE ANALYSIS

    公开(公告)号:US20230116897A1

    公开(公告)日:2023-04-13

    申请号:US17961896

    申请日:2022-10-07

    Abstract: Described herein are means for implementing systematic benchmarking analysis to improve transfer learning for medical image analysis. An exemplary system is configured with specialized instructions to cause the system to perform operations including: receiving training data having a plurality medical images therein; iteratively transforming a medical image from the training data into a transformed image by executing instructions for resizing and cropping each respective medical image from the training data to form a plurality of transformed images; applying data augmentation operations to the transformed images; applying segmentation operations to the augmented images; pre-training an AI model on different input images which are not included in the training data by executing self-supervised learning for the AI model; fine-tuning the pre-trained AI model to generate a pre-trained diagnosis and detection AI model; applying the pre-trained diagnosis and detection AI model to a new medical image to render a prediction as to the presence or absence of a disease within the new medical image; and outputting the prediction as a predictive medical diagnosis for a medical patient.

Patent Agency Ranking