摘要:
A transformer having input and output windings. A sample transformer includes an input winding wound around a core. The input winding has a first end and a second end. An output winding is also wound around the core. The output winding has a first end and a second end. The input winding is capacitively coupled to the output winding to provide a transfer of energy from the input winding to the output winding. A balancing winding is also wound around the core. The balancing winding has a first end and a second end. The first end of the balancing winding is electrically coupled to the first end of the input winding. The second end of the balancing winding is uncoupled such that a dot polarity of the balancing winding is to oppose an electrostatic field to be generated by the input winding relative to the output winding.
摘要:
An energy transfer element having windings. In one aspect, the energy transfer element includes a first winding wound around a core, the first winding has a first end and a second end. A second winding is wound around the core. The second winding has a first end and a second end. The first winding is capacitively coupled to the second winding to provide a transfer of energy from the first winding to the second winding. A third winding is wound around the core. The third winding has a first end and a second end. The first end of the third winding is electrically coupled to the first end of the second winding. The second end of the third winding is uncoupled such that an influence of an electrostatic field to be produced by the first and second windings relative to the core are to be cancelled by an electrostatic field to be created by the third winding.
摘要:
An energy transfer element having an energy transfer element input winding and an energy transfer element output winding. In one aspect, the energy transfer element input winding is capacitively coupled to the energy transfer element output winding. The energy transfer element is capacitively coupled to electrical earth. One or more additional windings are introduced as part of the energy transfer element. The one or more additional windings substantially reduce capacitive displacement current between the energy transfer element input winding and energy transfer element output winding by balancing the relative electrostatic fields generated between these windings and/or between the energy transfer element and electrical earth by canceling the electrostatic fields generated by all windings within the energy transfer element relative to electrical earth through the selection of the physical position and number of turns in the additional windings.
摘要:
An energy transfer element having an energy transfer element input winding and an energy transfer element output winding. In one aspect, the energy transfer element input winding is capacitively coupled to the energy transfer element output winding. The energy transfer element is capacitively coupled to electrical earth. One or more additional windings are introduced as part of the energy transfer element. The one or more additional windings substantially reduce capacitive displacement current between the energy transfer element input winding and energy transfer element output winding by balancing the relative electrostatic fields generated between these windings and/or between the energy transfer element and electrical earth by canceling the electrostatic fields generated by all windings within the energy transfer element relative to electrical earth through the selection of the physical position and number of turns in the additional windings.
摘要:
An energy transfer element having an energy transfer element input winding and an energy transfer element output winding. In one aspect, the energy transfer element input winding is capacitively coupled to the energy transfer element output winding. The energy transfer element is capacitively coupled to electrical earth. One or more additional windings are introduced as part of the energy transfer element. The one or more additional windings substantially reduce capacitive displacement current between the energy transfer element input winding and energy transfer element output winding by balancing the relative electrostatic fields generated between these windings and/or between the energy transfer element and electrical earth by canceling the electrostatic fields generated by all windings within the energy transfer element relative to electrical earth through the selection of the physical position and number of turns in the additional windings.
摘要:
An energy transfer element having an energy transfer element input winding and an energy transfer element output winding. In one aspect, the energy transfer element input winding is capacitively coupled to the energy transfer element output winding. The energy transfer element is capacitively coupled to electrical earth. One or more additional windings are introduced as part of the energy transfer element. The one or more additional windings substantially reduce capacitive displacement current between the energy transfer element input winding and energy transfer element output winding by balancing the relative electrostatic fields generated between these windings and/or between the energy transfer element and electrical earth by canceling the electrostatic fields generated by all windings within the energy transfer element relative to electrical earth through the selection of the physical position and number of turns in the additional windings.
摘要:
An energy transfer element having an energy transfer element input winding and an energy transfer element output winding. In one aspect, the energy transfer element input winding is capacitively coupled to the energy transfer element output winding. The energy transfer element is capacitively coupled to electrical earth. One or more additional windings are introduced as part of the energy transfer element. The one or more additional windings substantially reduce capacitive displacement current between the energy transfer element input winding and energy transfer element output winding by balancing the relative electrostatic fields generated between these windings and/or between the energy transfer element and electrical earth by canceling the electrostatic fields generated by all windings within the energy transfer element relative to electrical earth through the selection of the physical position and number of turns in the additional windings.
摘要:
In one aspect, a power converter includes a power switch, an energy storage element, a driver, a first calculator, and a second calculator. The first calculator coupled to determine an end of an on time of a power switch of the power converter by integrating an input current to output an on time signal representative of the end of the on time of the power switch. The second calculator coupled to determine an end of an off time of the power switch by integrating a difference between an input voltage and an output voltage to output an off time signal representative of the end of the off time of the power switch. The driver controls the power switch such that an input current of the power converter is substantially proportional to an input voltage of the power converter in response to the on time signal and the off time signal.
摘要:
An output voltage sensor for use in a power converter controller includes a first pulse sampler circuit coupled to receive a feedback signal representative of an output of a power converter. The first pulse sampler circuit is coupled to capture a first peak voltage representative of a second peak of a ringing voltage of the feedback signal at a first time in the feedback signal. A second pulse sampler circuit is coupled to receive the feedback signal representative of the output of the power converter. The second pulse sampler circuit is coupled to capture a second peak voltage representative of the second peak of the ringing voltage of the feedback signal at a second time in the feedback signal. The output voltage sensor is coupled to output a change signal to a drive circuit of the power converter controller in response to the first and second peak voltages.
摘要:
A controller for use in a power converter to detect changes in output voltage. An example controller includes a drive circuit to generate a switching signal. The switching signal is coupled to be received by a power switch to be coupled to an energy transfer element and an input of the power converter to control a transfer of energy from the input of the power converter to an output of the power converter. An output voltage sensor is coupled to the drive circuit and coupled to receive a feedback signal representative of the output of the power converter. The output voltage sensor includes first and second pulse sampler circuits. The first pulse sampler circuit is coupled to capture a first peak voltage representative of a second peak of a ringing voltage of the feedback signal at a first time in the feedback signal. The second pulse sampler circuit is coupled to capture a second peak voltage representative of the second peak of the ringing voltage of the feedback signal at a second time in the feedback signal. The output voltage sensor is coupled to output a change signal to the drive circuit in response to the first and second peak voltages.