摘要:
An electrode catheter is introduced into a vein or other hollow anatomical structure, and is positioned at a treatment: site within the structure. The end of the catheter is positioned near a junction formed in the structure. This junction can be the sapheno-femoral junction. The position of the catheter near the junction is determined based on a signal from a device associated with the catheter within the structure. A fiber optic filament which emits light is used with the catheter or a guide wire over which the catheter is advanced. The light is visible externally from the patient. The light dims and may no longer externally visible at the sapheno-femoral junction where the catheter moves past the deep fascia and toward the deep venous system. The position of the catheter can be determined based on this external observation. The position of the catheter can also be determined based on measured parameters such as temperature or flow rate within the structure, and the measured changes in one or more of these parameters as the catheter nears the junction. The hollow anatomical structure can be compressed for this procedure. The position of the catheter can also be determined mechanically by including a hook-shaped tip on the catheter or guide wire which would physically engage the junction.
摘要:
An electrode catheter is introduced into a vein or other hollow anatomical structure, and is positioned at a treatment site within the structure. The end of the catheter is positioned near a junction formed in the structure. This junction can be the sapheno-femoral junction. The position of the catheter near the junction is determined based on a signal from a device associated with the catheter within the structure. A fiber optic filament which emits light is used with the catheter or a guide wire over which the catheter is advanced. The light is visible externally from the patient. The light dims and may no longer externally visible at the sapheno-femoral junction where the catheter moves past the deep fascia and toward the deep venous system. The position of the catheter can be determined based on this external observation. The position of the catheter can also be determined based on measured parameters such as temperature or flow rate within the structure, and the measured changes in one or more of these parameters as the catheter nears the junction. The hollow anatomical structure can be compressed for this procedure. The position of the catheter can also be determined mechanically by including a hook-shaped tip on the catheter or guide wire which would physically engage the junction.
摘要:
A catheter includes a plurality of primary leads to deliver energy for ligating a hollow anatomical structure. Each of the primary leads includes an electrode located at the working end of the catheter. Separation is maintained between the primary leads such that each primary lead can individually receive power of selected polarity. The primary leads are constructed to expand outwardly to place the electrodes into apposition with an anatomical structure. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes of the primary leads are moved closer to one another. Where the hollow anatomical structure is a vein, energy is applied until the diameter of the vein is reduced to the point where the vein is occluded. In one embodiment, a secondary lead is surrounded by the primary leads, and extends beyond the primary leads. The secondary lead includes an electrode at the working end of the catheter. The secondary lead can have a polarity opposite to the polarity of the primary leads in a bipolar configuration. The polarity of the leads can be switched and the catheter can be moved during treatment to ligate an extended length of the vein. The catheter can include a lumen to accommodate a guide wire or to allow fluid delivery.
摘要:
A catheter includes a plurality of primary leads to deliver energy for ligating a hollow anatomical structure. Each of the primary leads includes an electrode located at the working end of the catheter. Separation is maintained between the primary leads such that each primary lead can individually receive power of selected polarity. The primary leads are constructed to expand outwardly to place the electrodes into apposition with an anatomical structure. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes of the primary leads are moved closer to one another. Where the hollow anatomical structure is a vein, energy is applied until the diameter of the vein is reduced to the point where the vein is occluded. In one embodiment, a secondary lead is surrounded by the primary leads, and extends beyond the primary leads. The secondary lead includes an electrode at the working end of the catheter. The secondary lead can have a polarity opposite to the polarity of the primary leads in a bipolar configuration. The polarity of the leads can be switched and the catheter can be moved during treatment to ligate an extended length of the vein. The catheter can include a lumen to accommodate a guide wire or to allow fluid delivery.
摘要:
A catheter includes a plurality of primary leads to deliver energy for ligating a hollow anatomical structure. Each of the primary leads includes an electrode located at the working end of the catheter. Separation is maintained between the primary leads such that each primary lead can individually receive power of selected polarity. The primary leads are constructed to expand outwardly to place the electrodes into apposition with an anatomical structure. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes of the primary leads are moved closer to one another. Where the hollow anatomical structure is a vein, energy is applied until the diameter of the vein is reduced to the point where the vein is occluded. In one embodiment, a secondary lead is surrounded by the primary leads, and extends beyond the primary leads. The secondary lead includes an electrode at the working end of the catheter. The secondary lead can have a polarity opposite to the polarity of the primary leads in a bipolar configuration. The polarity of the leads can be switched and the catheter can be moved during treatment to ligate an extended length of the vein. The catheter can include a lumen to accommodate a guide wire or to allow fluid delivery.
摘要:
A catheter includes a first plurality of expandable leads and a second plurality of expandable leads separate and longitudinally spaced-apart from the first plurality to deliver energy to a hollow anatomical structure, such as vein, fallopian tube, hemorrhoid, esophageal varix, to effectively ligate that structure. Each of the leads includes an electrode located at the distal end of the respective electrode lead. Polarizations of the leads may be selected to achieve the power distribution desired. Each electrode lead includes an outward bend such that when a movable sheath is moved out of contact with the leads, they expand outwardly into apposition with an inner wall of the structure to be ligated. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes are freely moved inward by the shrinking structure while still maintaining apposition with the inner wall of the shrinking structure.
摘要:
A catheter includes a plurality of expandable primary leads to deliver energy to a fallopian tube, a vein such as a hemorrhoid or an esophageal varix, or another hollow anatomical structure requiring ligation or occlusion. Each of the primary leads includes an electrode located at the working end of the catheter. Separation is maintained between the primary leads such that the leads can receive power of selected polarity. The primary leads are constructed to expand outwardly to place the electrodes into apposition with a hollow anatomical structure. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes of the primary leads are moved closer to one another.
摘要:
A catheter includes a plurality of primary leads to deliver energy for ligating a hollow anatomical structure. Each of the primary leads includes an electrode located at the working end of the catheter. Separation is maintained between the primary leads such that each primary lead can individually receive power of selected polarity. The primary leads are constructed to expand outwardly to place the electrodes into apposition with an anatomical structure. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes of the primary leads are moved closer to one another. Where the hollow anatomical structure is a vein, energy is applied until the diameter of the vein is reduced to the point where the vein is occluded. In one embodiment, a secondary lead is surrounded by the primary leads, and extends beyond the primary leads. The secondary lead includes an electrode at the working end of the catheter. The secondary lead can have a polarity opposite to the polarity of the primary leads in a bipolar configuration. The polarity of the leads can be switched and the catheter can be moved during treatment to ligate an extended length of the vein. The catheter can include a lumen to accommodate a guide wire or to allow fluid delivery.
摘要:
A catheter includes a plurality of primary leads to deliver energy for ligating a hollow anatomical structure. Each of the primary leads includes an electrode located at the working end of the catheter. Separation is maintained between the primary leads such that each primary lead can individually receive power of selected polarity. The primary leads are constructed to expand outwardly to place the electrodes into apposition with an anatomical structure. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes of the primary leads are moved closer to one another. Where the hollow anatomical structure is a vein, energy is applied until the diameter of the vein is reduced to the point where the vein is occluded. In one embodiment, a secondary lead is surrounded by the primary leads, and extends beyond the primary leads. The secondary lead includes an electrode at the working end of the catheter. The secondary lead can have a polarity opposite to the polarity of the primary leads in a bipolar configuration. The polarity of the leads can be switched and the catheter can be moved during treatment to ligate an extended length of the vein. The catheter can include a lumen to accommodate a guide wire or to allow fluid delivery.
摘要:
A catheter includes a first plurality of expandable leads and a second plurality of expandable leads separate and longitudinally spaced-apart from the first plurality to deliver energy to a hollow anatomical structure, such as vein, fallopian tube, hemorrhoid, esophageal varix, to effectively ligate that structure. Each of the leads includes an electrode located at the distal end of the respective electrode lead. Polarizations of the leads may be selected to achieve the power distribution desired. Each electrode lead includes an outward bend such that when a movable sheath is moved out of contact with the leads, they expand outwardly into apposition with an inner wall of the structure to be ligated. High frequency energy can be applied from the leads to create a heating effect in the surrounding tissue of the anatomical structure. The diameter of the hollow anatomical structure is reduced by the heating effect, and the electrodes are freely moved inward by the shrinking structure while still maintaining apposition with the inner wall of the shrinking structure.