摘要:
The subject innovation provides for systems and methods to optimize control systems for networked industrial sensors or devices and methods for self sensing, communicating with, monitoring of, controlling and optimizing utilization of networked industrial sensors and related control systems primarily in an industrial automation environment. The invention provides self-sensing and communication with sensors, and integration of control methods and strategies with decision support and logistics systems, to optimize specifically defined operational and performance objectives.
摘要:
The subject innovation provides for systems and methods to optimize control systems for networked industrial sensors or devices and methods for self sensing, communicating with, monitoring of, controlling and optimizing utilization of networked industrial sensors and related control systems primarily in an industrial automation environment. The invention provides self-sensing and communication with sensors, and integration of control methods and strategies with decision support and logistics systems, to optimize specifically defined operational and performance objectives.
摘要:
Self-sensing feedback functionality for electromechanical actuators/motors is provided for use in operation and/or as a redundant safety mechanism to attain safety certification without adding extra bulk or wiring to the motor. An actuator can be manufactured having one or more saliencies that cause a spatial variance of inductance. A high frequency signal can be injected into the actuator and sampled to determine a current, voltage, or other electrical parameter. The parameter can be evaluated against the known saliencies of the actuator to determine a position of the actuator and/or an associated rotor. Additionally, the position can be evaluated as a function of time to determine a velocity. This can provide an alternative method for operating the electromechanical actuator according to the position/velocity provided. Additionally, this can provide a redundant feedback channel for safety certification without requiring additional actuator parts.
摘要:
Self-sensing feedback functionality for electromechanical actuators/motors is provided for use in operation and/or as a redundant safety mechanism to attain safety certification without adding extra bulk or wiring to the motor. An actuator can be manufactured having one or more saliencies that cause a spatial variance of inductance. A high frequency signal can be injected into the actuator and sampled to determine a current, voltage, or other electrical parameter. The parameter can be evaluated against the known saliencies of the actuator to determine a position of the actuator and/or an associated rotor. Additionally, the position can be evaluated as a function of time to determine a velocity. This can provide an alternative method for operating the electromechanical actuator according to the position/velocity provided. Additionally, this can provide a redundant feedback channel for safety certification without requiring additional actuator parts.
摘要:
Systems and methods that detect a phase loss condition in a three-phase electrical power source are presented. The system includes a detection component that measures and/or monitors a magnitude and frequency of a voltage of a power source, and a controller component that compares measured and/or monitored voltage characteristics to characteristics associated with phase loss.
摘要:
Systems and methods that detect a phase loss condition in a three-phase electrical power source are presented. The system includes a detection component that measures and/or monitors a magnitude and frequency of a voltage of a power source, and a controller component that compares measured and/or monitored voltage characteristics to characteristics associated with phase loss.