摘要:
A multiple input multiple output (MIMO) RF transceiver system includes a plurality of RF transceiver ICs, a crystal, and master oscillation coupling. Each of the plurality of RF transceiver ICs includes crystal oscillator circuitry. Crystal oscillator circuitry of the first RF transceiver IC and a crystal are operable to produce a master oscillation. Master oscillation coupling couples the master oscillation produced by the first RF transceiver IC to the at least one other RF transceiver IC. In one embodiment, the master oscillation is passed from the first RF transceiver IC to each other transceiver RF ICs. In another embodiment, the master oscillation is used to produce a slave oscillation at a second RF transceiver IC and subsequent RF transceiver ICs produce there own slave oscillation based upon a slave oscillation received from a prior RF transceiver IC.
摘要:
Analog signal paths are utilized between a baseband processor and a radio front end to support high throughput communications for a multiple in multiple out radio transceiver that support communications over two or more antennas. Specifically, analog differential I and Q path communication signals are exchanged between a radio front end core and a baseband processor to maximize throughput capacity for high data rate signals. Along the same lines, the impedances of traces and the interface are matched to reduce I/Q imbalance.
摘要:
Analog signal paths are utilized between a baseband processor and a radio front end to support high throughput communications for a multiple in multiple out radio transceiver that support communications over two or more antennas. Specifically, analog differential I and Q path communication signals are exchanged between a radio front end core and a baseband processor to maximize throughput capacity for high data rate signals. Along the same lines, the impedances of traces and the interface are matched to reduce I/Q imbalance.
摘要:
The present invention provides adjusting of a radio frequency (RF) receiver that includes processing that begins by enabling an initial setting of the RF receiver, wherein the initial setting is based on a bandwidth of a channel of a plurality of channels. The processing continues by receiving an RF signal containing a preamble of a frame via one of the plurality of channels. The processing continues by converting the RF signal to a baseband signal based on the initial setting. The processing continues by determining channel type of the one of the plurality of channels based on the baseband signal. The processing continues by determining whether the channel type corresponds to the bandwidth of the initial setting. The processing continues by, when the channel type does not correspond to the bandwidth of the initial setting, adjusting setting of the RF receiver based on the channel type.
摘要:
Analog signal paths are utilized between a baseband processor and a radio front end to support high throughput communications for a multiple in multiple out radio transceiver that support communications over two or more antennas. Specifically, analog differential I and Q path communication signals are exchanged between a radio front end core and a baseband processor to maximize throughput capacity for high data rate signals. Along the same lines, the impedances of traces and the interface are matched to reduce I/Q imbalance.
摘要:
Analog signal paths are utilized between a baseband processor and a radio front end to support high throughput communications for a multiple in multiple out radio transceiver that support communications over two or more antennas. Specifically, analog differential I and Q path communication signals are exchanged between a radio front end core and a baseband processor to maximize throughput capacity for high data rate signals. Along the same lines, the impedances of traces and the interface are matched to reduce I/Q imbalance.
摘要:
Analog signal paths are utilized between a baseband processor and a radio front end to support high throughput communications for a multiple in multiple out radio transceiver that support communications over two or more antennas. Specifically, analog differential I and Q path communication signals are exchanged between a radio front end core and a baseband processor to maximize throughput capacity for high data rate signals. Along the same lines, the impedances of traces and the interface are matched to reduce I/Q imbalance.
摘要:
Analog signal paths are utilized between a baseband processor and a radio front end to support high throughput communications for a multiple in multiple out radio transceiver that support communications over two or more antennas. Specifically, analog differential I and Q path communication signals are exchanged between a radio front end core and a baseband processor to maximize throughput capacity for high data rate signals. Along the same lines, the impedances of traces and the interface are matched to reduce I/Q imbalance.
摘要:
A method for multiple input multiple output wireless communication begins by determining protocols of wireless communication devices within a proximal region. The method continues by determining whether the protocols of the wireless communication devices within the proximal region are of a like protocol. The method continues by determining the number of transmit antennas. The method continues, when the protocols of the wireless communication devices within the proximal region are of the like protocol, formatting a preamble of a frame of the wireless communication utilizing at least one of cyclic shifting of symbols, cyclic shifting of tones, sparse tone allocation, and sparse symbol allocation based on the number of transmit antennas.
摘要:
A method for configuring a multiple input multiple output (MIMO) wireless communication begins by generating a plurality of preambles for a plurality of transmit antennas. Each of the plurality of preambles includes a carrier detection sequence at a legacy transmit rate, a first channel sounding at the legacy transmit rate, a signal field at the legacy transmit rate, and Z−1 channel soundings at a MIMO transmit rate, where L corresponds to a number of channel soundings. The method continues by simultaneously transmitting the plurality of preambles via the plurality of transmit antennas.