Interactive optimization of the behavior of a system
    1.
    发明授权
    Interactive optimization of the behavior of a system 有权
    交互式优化系统的行为

    公开(公告)号:US08898090B2

    公开(公告)日:2014-11-25

    申请号:US12756183

    申请日:2010-04-08

    IPC分类号: G06F15/18 G06F7/00 G06N99/00

    CPC分类号: G06N99/005

    摘要: An interactive tool is described for modifying the behavior of a system, such as, but not limited to, the behavior of a classification system. The tool uses an interface mechanism to present a current global state of the system. The tool accepts one or more refinements to this global state, e.g., by accepting individual changes to parameter settings that are presented by the interface mechanism. Based on this input, the tool computes and displays the global implications of the updated parameter settings. The process of iterating over one or more cycles of user updates, followed by computation and display of the implications of the attempted refinements, has the effect of advancing the system towards a global state that exhibits desirable behavior.

    摘要翻译: 描述了用于修改系统的行为的交互式工具,例如但不限于分类系统的行为。 该工具使用接口机制来呈现系统的当前全局状态。 该工具接受对该全局状态的一个或多个改进,例如通过接受由接口机制呈现的参数设置的单独改变。 基于此输入,该工具计算并显示更新参数设置的全局含义。 迭代一个或多个用户更新周期的过程,随后计算和显示尝试改进的含义,具有将系统推向呈现期望行为的全局状态的效果。

    Interactive Optimization of the Behavior of a System
    2.
    发明申请
    Interactive Optimization of the Behavior of a System 有权
    交互式优化系统的行为

    公开(公告)号:US20110251980A1

    公开(公告)日:2011-10-13

    申请号:US12756183

    申请日:2010-04-08

    IPC分类号: G06F15/18 G06N5/02 G06F1/24

    CPC分类号: G06N99/005

    摘要: An interactive tool is described for modifying the behavior of a system, such as, but not limited to, the behavior of a classification system. The tool uses an interface mechanism to present a current global state of the system. The tool accepts one or more refinements to this global state, e.g., by accepting individual changes to parameter settings that are presented by the interface mechanism. Based on this input, the tool computes and displays the global implications of the updated parameter settings. The process of iterating over one or more cycles of user updates, followed by computation and display of the implications of the attempted refinements, has the effect of advancing the system towards a global state that exhibits desirable behavior.

    摘要翻译: 描述了用于修改系统的行为的交互式工具,例如但不限于分类系统的行为。 该工具使用接口机制来呈现系统的当前全局状态。 该工具接受对该全局状态的一个或多个改进,例如通过接受由接口机制呈现的参数设置的单独改变。 基于此输入,该工具计算并显示更新参数设置的全局含义。 迭代一个或多个用户更新周期的过程,随后计算和显示尝试改进的含义,具有将系统推向呈现期望行为的全局状态的效果。

    Interactive visualization for generating ensemble classifiers
    5.
    发明授权
    Interactive visualization for generating ensemble classifiers 有权
    用于生成综合分类器的交互式可视化

    公开(公告)号:US08306940B2

    公开(公告)日:2012-11-06

    申请号:US12408663

    申请日:2009-03-20

    IPC分类号: G06F15/18 G06F17/00 G06N5/04

    CPC分类号: G06N99/005

    摘要: A real-time visual feedback ensemble classifier generator and method for interactively generating an optimal ensemble classifier using a user interface. Embodiments of the real-time visual feedback ensemble classifier generator and method use a weight adjustment operation and a partitioning operation in the interactive generation process. In addition, the generator and method include a user interface that provides real-time visual feedback to a user so that the user can see how the weight adjustment and partitioning operation affect the overall accuracy of the ensemble classifier. Using the user interface and the interactive controls available on the user interface, a user can iteratively use one or both of the weigh adjustment operation and partitioning operation to generate an optimized ensemble classifier.

    摘要翻译: 一种实时视觉反馈综合分类器生成器和方法,用于使用用户界面交互式生成最佳集合分类器。 实时视觉反馈综合分类器发生器和方法的实施例在交互式生成过程中使用权重调整操作和分割操作。 此外,发生器和方法包括向用户提供实时视觉反馈的用户界面,使得用户可以看到权重调整和分割操作如何影响整体分类器的整体精度。 使用用户界面上的用户界面和交互式控件,用户可以迭代地使用权重调整操作和分区操作中的一个或两者来生成优化的整体分类器。

    Interactive concept learning in image search
    6.
    发明授权
    Interactive concept learning in image search 有权
    图像搜索中的互动概念学习

    公开(公告)号:US09008446B2

    公开(公告)日:2015-04-14

    申请号:US13429342

    申请日:2012-03-24

    IPC分类号: G06K9/62 G06F17/30

    CPC分类号: G06F17/30247 G06K9/6215

    摘要: An interactive concept learning image search technique that allows end-users to quickly create their own rules for re-ranking images based on the image characteristics of the images. The image characteristics can include visual characteristics as well as semantic features or characteristics, or may include a combination of both. End-users can then rank or re-rank any current or future image search results according to their rule or rules. End-users provide examples of images each rule should match and examples of images the rule should reject. The technique learns the common image characteristics of the examples, and any current or future image search results can then be ranked or re-ranked according to the learned rules.

    摘要翻译: 一种交互式概念学习图像搜索技术,允许最终用户基于图像的图像特征快速创建自己的重新排序图像的规则。 图像特征可以包括视觉特征以及语义特征或特征,或者可以包括两者的组合。 然后,最终用户可以根据其规则或规则对当前或将来的图像搜索结果进行排名或重新排序。 最终用户提供每个规则应该匹配的图像的示例以及规则应该拒绝的图像的示例。 该技术学习示例的常见图像特征,然后可以根据学习的规则对任何当前或将来的图像搜索结果进行排名或重新排序。

    EXPLORING DATA USING MULTIPLE MACHINE-LEARNING MODELS
    7.
    发明申请
    EXPLORING DATA USING MULTIPLE MACHINE-LEARNING MODELS 有权
    使用多种机器学习模型探索数据

    公开(公告)号:US20110307422A1

    公开(公告)日:2011-12-15

    申请号:US12797395

    申请日:2010-06-09

    IPC分类号: G06F15/18

    CPC分类号: G06N99/005

    摘要: A multiple model data exploration system and method for running multiple machine-learning models simultaneously to understand and explore data. Embodiments of the system and method allow a user to gain a greater understanding of the data and to gain new insights into their data. Embodiments of the system and method also allow a user to interactively explore the problem and to navigate different views of data. Many different classifier training and evaluation experiments are run simultaneously and results are obtained. The results are aggregated and visualized across each of the experiments to determine and understand how each example is classified for each different classifier. These results then are summarized in a variety of ways to allow users to obtain a greater understanding of the data both in terms of the individual examples themselves and features associated with the data.

    摘要翻译: 一种用于同时运行多个机器学习模型的多模型数据挖掘系统和方法,用于理解和探索数据。 该系统和方法的实施例允许用户更好地理解数据并获得对其数据的新见解。 系统和方法的实施例还允许用户交互地探索问题并导航数据的不同视图。 同时运行许多不同的分类器训练和评估实验,得到结果。 结果在每个实验中进行聚合和可视化,以确定和理解每个示例如何分类给每个不同的分类器。 然后以各种方式总结这些结果,以允许用户在各个示例本身和与数据相关的特征方面获得对数据的更多了解。

    INTERACTIVE CONCEPT LEARNING IN IMAGE SEARCH
    8.
    发明申请
    INTERACTIVE CONCEPT LEARNING IN IMAGE SEARCH 有权
    图像搜索中的交互式概念学习

    公开(公告)号:US20090154795A1

    公开(公告)日:2009-06-18

    申请号:US11954246

    申请日:2007-12-12

    IPC分类号: G06K9/62

    CPC分类号: G06F17/30247 G06K9/6215

    摘要: An interactive concept learning image search technique that allows end-users to quickly create their own rules for re-ranking images based on the image characteristics of the images. The image characteristics can include visual characteristics as well as semantic features or characteristics, or may include a combination of both. End-users can then rank or re-rank any current or future image search results according to their rule or rules. End-users provide examples of images each rule should match and examples of images the rule should reject. The technique learns the common image characteristics of the examples, and any current or future image search results can then be ranked or re-ranked according to the learned rules.

    摘要翻译: 一种交互式概念学习图像搜索技术,允许最终用户基于图像的图像特征快速创建自己的重新排序图像的规则。 图像特征可以包括视觉特征以及语义特征或特征,或者可以包括两者的组合。 然后,最终用户可以根据其规则或规则对当前或将来的图像搜索结果进行排名或重新排序。 最终用户提供每个规则应该匹配的图像的示例以及规则应该拒绝的图像的示例。 该技术学习示例的常见图像特征,然后可以根据学习的规则对任何当前或将来的图像搜索结果进行排名或重新排序。

    INTERACTIVE CONCEPT LEARNING IN IMAGE SEARCH
    9.
    发明申请
    INTERACTIVE CONCEPT LEARNING IN IMAGE SEARCH 有权
    图像搜索中的交互式概念学习

    公开(公告)号:US20120183206A1

    公开(公告)日:2012-07-19

    申请号:US13429342

    申请日:2012-03-24

    IPC分类号: G06K9/62

    CPC分类号: G06F17/30247 G06K9/6215

    摘要: An interactive concept learning image search technique that allows end-users to quickly create their own rules for re-ranking images based on the image characteristics of the images. The image characteristics can include visual characteristics as well as semantic features or characteristics, or may include a combination of both. End-users can then rank or re-rank any current or future image search results according to their rule or rules. End-users provide examples of images each rule should match and examples of images the rule should reject. The technique learns the common image characteristics of the examples, and any current or future image search results can then be ranked or re-ranked according to the learned rules.

    摘要翻译: 一种交互式概念学习图像搜索技术,允许最终用户基于图像的图像特征快速创建自己的重新排序图像的规则。 图像特征可以包括视觉特征以及语义特征或特征,或者可以包括两者的组合。 然后,最终用户可以根据其规则或规则对当前或将来的图像搜索结果进行排名或重新排序。 最终用户提供每个规则应该匹配的图像的示例以及规则应该拒绝的图像的示例。 该技术学习示例的常见图像特征,然后可以根据学习的规则对任何当前或将来的图像搜索结果进行排名或重新排序。

    Interactive concept learning in image search
    10.
    发明授权
    Interactive concept learning in image search 有权
    图像搜索中的互动概念学习

    公开(公告)号:US08165406B2

    公开(公告)日:2012-04-24

    申请号:US11954246

    申请日:2007-12-12

    IPC分类号: G06K9/62

    CPC分类号: G06F17/30247 G06K9/6215

    摘要: An interactive concept learning image search technique that allows end-users to quickly create their own rules for re-ranking images based on the image characteristics of the images. The image characteristics can include visual characteristics as well as semantic features or characteristics, or may include a combination of both. End-users can then rank or re-rank any current or future image search results according to their rule or rules. End-users provide examples of images each rule should match and examples of images the rule should reject. The technique learns the common image characteristics of the examples, and any current or future image search results can then be ranked or re-ranked according to the learned rules.

    摘要翻译: 一种交互式概念学习图像搜索技术,允许最终用户基于图像的图像特征快速创建自己的重新排序图像的规则。 图像特征可以包括视觉特征以及语义特征或特征,或者可以包括两者的组合。 然后,最终用户可以根据其规则或规则对当前或将来的图像搜索结果进行排名或重新排序。 最终用户提供每个规则应该匹配的图像的示例以及规则应该拒绝的图像的示例。 该技术学习示例的常见图像特征,然后可以根据学习的规则对任何当前或将来的图像搜索结果进行排名或重新排序。