摘要:
A point correspondence procedure is applied to a set of images of a specular object to produce sparse reflection correspondences. The set of images is subject to rotation while acquired by a camera. That is, either the camera, the environment or the object rotates. Either a linear system AΘ=0 is solved or a related second order cone program (SOCP) is solved, where Θ is a vector of local surface parameters. Gradients of the surface are obtained from the local quadric surface parameters, and the gradients are integrated to obtain normals, wherein the normals define a shape of the surface.
摘要:
Embodiments of the invention disclose a system and a method for determining points of parabolic curvature on a surface of a specular object from a set of images of the object is acquired by a camera under a relative motion between a camera-object pair and the environment. The method determines directions of image gradients at each pixel of each image in the set of images, wherein pixels from different images corresponding to an identical point on the surface of the object form corresponding pixels. The corresponding pixels having substantially constant the direction of the image gradients are selected as pixels representing points of the parabolic curvature.
摘要:
Embodiments of the invention disclose a system and a method for determining points of parabolic curvature on a surface of a specular object from a set of images of the object is acquired by a camera under a relative motion between a camera-object pair and the environment. The method determines directions of image gradients at each pixel of each image in the set of images, wherein pixels from different images corresponding to an identical point on the surface of the object form corresponding pixels. The corresponding pixels having substantially constant the direction of the image gradients are selected as pixels representing points of the parabolic curvature.
摘要:
A point correspondence procedure is applied to a set of images of a specular object to produce sparse reflection correspondences. The set of images is subject to rotation while acquired by a camera. That is, either the camera, the environment or the object rotates. Either a linear system AΘ=0 is solved or a related second order cone program (SOCP) is solved, where Θ is a vector of local surface parameters. Gradients of the surface are obtained from the local quadric surface parameters, and the gradients are integrated to obtain normals, wherein the normals define a shape of the surface.
摘要:
Techniques and technologies for tracking a face with a plurality of cameras wherein a geometry between the cameras is initially unknown. One disclosed method includes detecting a head with two of the cameras and registering a head model with the image of the head (as detected by one of the cameras). The method also includes back projecting the other detected face image to the head model and determining a head pose from the back-projected head image. Furthermore, the determined geometry is used to track the face with at least one of the cameras.
摘要:
Techniques and technologies for tracking a face with a plurality of cameras wherein a geometry between the cameras is initially unknown. One disclosed method includes detecting a head with two of the cameras and registering a head model with the image of the head (as detected by one of the cameras). The method also includes back projecting the other detected face image to the head model and determining a head pose from the back-projected head image. Furthermore, the determined geometry is used to track the face with at least one of the cameras.