摘要:
A sequence of images of a scene having varying spatio-temporal resolutions is acquired by a sensor of a camera. Adjacent pixels of the sensor are partitioned into a multiple sets of the pixels. An integration time for acquiring each set of pixels is partitioned into multiple time intervals. The images are acquired while some of the pixels in each set are ON for some of the intervals, while other pixels are OFF. Then, the pixels are combined into a space-time volume of voxels, wherein the voxels have varying spatial resolutions and varying temporal resolutions.
摘要:
Glare is reduced by acquiring an input image with a camera having a lens and a sensor, in which a pin-hole mask is placed in close proximity to the sensor. The mask localizes the glare at readily identifiable pixels, which can then be filtered to produce a glare reduce output image.
摘要:
A method and system determines a 3D pose of an object in a scene. Depth edges are determined from a set of images acquired of a scene including multiple objects while varying illumination in the scene. The depth edges are linked to form contours. The images are segmented into regions according to the contours. An occlusion graph is constructed using the regions. The occlusion graph includes a source node representing an unoccluded region of an unoccluded object in scene. The contour associated with the unoccluded region is compared with a set of silhouettes of the objects, in which each silhouette has a known pose. The known pose of a best matching silhouette is selected as the pose of the unoccluded object.
摘要:
A three-dimensional (3D) location of a reflection point of a ray between a point in a scene (PS) and a center of projection (COP) of a camera of a catadioptric system is determined. The catadioptric system is non-central and includes the camera and a reflector, wherein a surface of the reflector is a quadric surface rotationally symmetric around an axis of symmetry. The 3D location of the reflection point is determined based on a law of reflection, an equation of the reflector, and an equation describing a reflection plane defined by the COP, the PS, and a point of intersection of a normal to the reflector at the reflection point with the axis of symmetry.
摘要:
A point correspondence procedure is applied to a set of images of a specular object to produce sparse reflection correspondences. The set of images is subject to rotation while acquired by a camera. That is, either the camera, the environment or the object rotates. Either a linear system AΘ=0 is solved or a related second order cone program (SOCP) is solved, where Θ is a vector of local surface parameters. Gradients of the surface are obtained from the local quadric surface parameters, and the gradients are integrated to obtain normals, wherein the normals define a shape of the surface.
摘要:
Embodiment of invention discloses a system and a method for determining a three-dimensional (3D) location of a folding point of a ray between a point in a scene (PS) and a center of projection (COP) of a camera of a catadioptric system. One embodiment maps the catadioptric system, including 3D locations of the PS and the COP on a two-dimensional (2D) plane defined by an axis of symmetry of a folding optical element and the PS to produce a conic and 2D locations of the PS and COP on the 2D plane, and determines a 2D location of the folding point on the 2D plane based on the conic, the 2D locations of the PS and the COP. Next, the embodiment determines the 3D location of the folding point from the 2D location of the folding point on the 2D plane.
摘要:
An apparatus and method determine a 3D shape of an object in a scene. The object is illuminated to cast multiple silhouettes on a diffusing screen coplanar and in close proximity to a mask. A single image acquired of the diffusing screen is partitioned into subview according to the silhouettes. A visual hull of the object is then constructed according to isosurfaces of the binary images to approximate the 3D shape of the object.
摘要:
A single camera acquires an input image of a scene as observed in an array of spheres, wherein pixels in the input image corresponding to each sphere form a sphere image. A set of virtual cameras are defined for each sphere on a line joining a center of the sphere and a center of projection of the camera, wherein each virtual camera has a different virtual viewpoint and an associated cone of rays, appearing as a circle of pixels on its virtual image plane. A projective texture mapping of each sphere image is applied to all of the virtual cameras on the virtual image plane to produce a virtual camera image comprising circle of pixels. Each virtual camera image for each sphere is then projected to a refocusing geometry using a refocus viewpoint to produce a wide-angle lightfield view, which are averaged to produce a refocused wide-angle image.
摘要:
Embodiment of invention discloses a system and a method for determining a three-dimensional (3D) location of a folding point of a ray between a point in a scene (PS) and a center of projection (COP) of a camera of a catadioptric system. One embodiment maps the catadioptric system, including 3D locations of the PS and the COP on a two-dimensional (2D) plane defined by an axis of symmetry of a folding optical element and the PS to produce a conic and 2D locations of the PS and COP on the 2D plane, and determines a 2D location of the folding point on the 2D plane based on the conic, the 2D locations of the PS and the COP. Next, the embodiment determines the 3D location of the folding point from the 2D location of the folding point on the 2D plane.
摘要:
A method and system determines a 3D pose of an object in a scene. Depth edges are determined from a set of images acquired of a scene including multiple objects while varying illumination in the scene. The depth edges are linked to form contours. The images are segmented into regions according to the contours. An occlusion graph is constructed using the regions. The occlusion graph includes a source node representing an unoccluded region of an unoccluded object in scene. The contour associated with the unoccluded region is compared with a set of silhouettes of the objects, in which each silhouette has a known pose. The known pose of a best matching silhouette is selected as the pose of the unoccluded object.