摘要:
The present invention advantageously provides several systems and methods for solving the trombone routing issues within an IMS/MMD network. These approaches avoid trombone routing, speed up handoff, and increase the efficiency of signaling and overall performance of an IMS/MMD network. These solutions can broadly be divided into the following categories. Piggy-backing SIP registration over MIP (Split at FA); Selective Reverse Tunneling and Tunneling between FA and P-CSCF; the SIP-based mobility protocol; use of CoA during SIP registration and call up in MIPv6; Piggy-backing SIP registration when HA and S-CSCF Co-exist; Using Dynamic Home Agents in MIPv4 FA-CoA; and the Interceptor-Caching Approach.
摘要:
The present invention advantageously provides several systems and methods for solving the trombone routing issues within an IMS/MMD network. These approaches avoid trombone routing, speed up handoff, and increase the efficiency of signaling and overall performance of an IMS/MMD network. These solutions can broadly be divided into the following categories. Piggy-backing SIP registration over MIP (Split at FA); Selective Reverse Tunneling and Tunneling between FA and P-CSCF; the SIP-based mobility protocol; use of CoA during SIP registration and call up in MIPv6; Piggy-backing SIP registration when HA and S-CSCF Co-exist; Using Dynamic Home Agents in MIPv4 FA-CoA; and the Interceptor-Caching Approach.
摘要:
A mechanism by which handoff delay can be minimized while not compromising the IMS/MMD security and also protecting the media if required by certain applications is presented. One proactive method includes proactive authentication. Another proactive method includes proactive security association, such as transferring SA keys from old proxy to new proxy, or transferring keys through serving signal entities. Reactive methods include transferring SA keys from old proxy to new proxy, using either push or pull technology. Other reactive methods include transferring keys through serving signal entities using either push or pull technology.
摘要:
A mechanism by which handoff delay can be minimized while not compromising the IMS/MMD security and also protecting the media if required by certain applications is presented. One proactive method includes proactive authentication. Another proactive method includes proactive security association, such as transferring SA keys from old proxy to new proxy, or transferring keys through serving signal entities. Reactive methods include transferring SA keys from old proxy to new proxy, using either push or pull technology. Other reactive methods include transferring keys through serving signal entities using either push or pull technology.
摘要:
A mechanism by which handoff delay can be minimized while not compromising the IMS/MMD security and also protecting the media if required by certain applications is presented. Methods for mitigating delay during SA re-association and mitigating the IPSec tunnel overhead for signaling and media at the Mobile Node are given. In one embodiment, SA keys can be transferred from the old P-CSCF to new P-CSCF, enabling the establishment of SAs before Mobile Node physically moves to the new subnet in a network. Proactive handover is used. In another embodiment, SA keys are transferred from S-CSCF to new P-CSCF. In this case, the SA keys are transferred to the new P-CSCF by S-CSCF through a context transfer mechanism well in advance so that SAs may be established before Mobile Node physically moves to new subnet. In another embodiment, methods for mitigating IPSec tunnel overhead are presented.
摘要:
A mechanism by which handoff delay can be minimized while not compromising the IMS/MMD security and also protecting the media if required by certain applications is presented. One proactive method includes proactive authentication. Another proactive method includes proactive security association, such as transferring SA keys from old proxy to new proxy, or transferring keys through serving signal entities. Reactive methods include transferring SA keys from old proxy to new proxy, using either push or pull technology. Other reactive methods include transferring keys through serving signal entities using either push or pull technology.
摘要:
A mechanism by which handoff delay can be minimized while not compromising the IMS/MMD security and also protecting the media if required by certain applications is presented. Methods for mitigating delay during SA re-association and mitigating the IPSec tunnel overhead for signaling and media at the Mobile Node are given. In one embodiment, SA keys can be transferred from the old P-CSCF to new P-CSCF, enabling the establishment of SAs before Mobile Node physically moves to the new subnet in a network. Proactive handover is used. In another embodiment, SA keys are transferred from S-CSCF to new P-CSCF. In this case, the SA keys are transferred to the new P-CSCF by S-CSCF through a context transfer mechanism well in advance so that SAs may be established before Mobile Node physically moves to new subnet. In another embodiment, methods for mitigating IPSec tunnel overhead are presented.
摘要:
A mechanism by which handoff delay can be minimized while not compromising the IMS/MMD security and also protecting the media if required by certain applications is presented. One proactive method includes proactive authentication. Another proactive method includes proactive security association, such as transferring SA keys from old proxy to new proxy, or transferring keys through serving signal entities. Reactive methods include transferring SA keys from old proxy to new proxy, using either push or pull technology. Other reactive methods include transferring keys through serving signal entities using either push or pull technology.
摘要:
A system and method for route optimization in PMIP having a first mobile node having a local mobility anchor and anchored at an access router and a second mobile node anchored at an access router is presented. The method includes establishing a binding cache at one access router comprising a mapping of mobile node addresses to access router addresses, populating the binding cache, and updating the mapping of the mobile node addresses in response to a handoff of a mobile node from one access router to another access router, so that a packet is transmitted from the first mobile node to the second mobile node using the mapping in the binding cache. The second access router address is obtained by either transmitting the packet from the first mobile node to the local mobility anchor, or querying neighboring access routers, or broadcasting access router addresses from the local mobility anchor.
摘要:
A system and method for mobility support of a mobile node having a home network in a heterogeneous roaming environment is presented. The method comprises the steps of authenticating the mobile node in a visited network and obtaining an address for the mobile node in the visited network, establishing a security connection between a functional component in the visited network and an agent in the home network, creating a home address for the mobile node, and using the home address to generate a SIP signaling address, a SIP media address, and a non-SIP media address, such that SIP non-media is transmitted using the security connection to the SIP signaling address, SIP media is transmitted using the security connection to the SIP media address, and non-SIP media is transmitted using the security connection to the non-SIP media address.