摘要:
The present invention provides isolated polynucleotide sequences encoding α-mannosidase. The present invention further provides DNA constructs comprising the polynucleotide sequence coding for α-mannosidase in sense or anti-sense orientation, RNAi contructs, recombinant vectors comprising the constructs, and host cells comprising the recombinant vector. The present invention further provides transgenic plants, plant cells, transgenic progeny and seeds expressing the polynucleotide with reduced α-mannosidase protein accumulation, having enhanced fruit shelf life.
摘要:
The present invention provides isolated polynucleotide sequences encoding α-mannosidase. The present invention further provides DNA constructs comprising the polynucleotide sequence coding for α-mannosidase in sense or anti-sense orientation, RNAi constructs, recombinant vectors comprising the constructs, and host cells comprising the recombinant vector. The present invention further provides transgenic plants, plant cells, transgenic progeny and seeds expressing the polynucleotide with reduced α-mannosidase protein accumulation, having enhanced fruit shelf life.
摘要:
The present invention provides isolated polynucleotide sequences encoding β-D-N-acetylhexosaminidase. The present invention further provides DNA construct comprising the polynucleotide sequence coding for β-D-N-acetylhexosaminidase in sense or anti-sense orientation, RNAi construct, recombinant vector comprising the construct and host cells comprising the recombinant vector disclosed in the present invention. The present invention further provides transgenic plant, plant cell, transgenic progeny and seeds expressing the polynucleotide with reduced β-D-N-acetylhexosaminidase protein accumulation, having enhanced fruit shelf life
摘要:
The present invention provides isolated polynucleotide sequences encoding β-D-N-acetylhexosaminidase. The present invention further provides DNA construct comprising the polynucleotide sequence coding for β-D-N-acetylhexosaminidase in sense or antisense orientation, RNAi construct, recombinant vector comprising the construct and host cells comprising the recombinant vector disclosed in the present invention. The present invention further provides transgenic plant, plant cell, transgenic progeny and seeds expressing the polynucleotide with reduced β-D-N-acetylhexosaminidase protein accumulation, having enhanced fruit shelf life.
摘要:
Polynucleotides isolated from chickpea are disclosed herein. The disclosed polynucleotides of the present invention provide genotype-dependent spatial information on the presence and relative abundance of each gene. The transcriptomic analysis of the polynucleotides revealed (649) non-cannonical genes besides many unexpected candidates with known biochemical functions, which have never been associated with pathostress-responsive transcriptome. The polynucleotides disclosed in the present invention can be used as a molecular tool for isolation of novel genes from plants that can be used for plant improvement. Further, the polynucleotide responsible for improving immunity against fungal pathogen in plants is disclosed herein. The present invention also provides a method of improving immunity against fungal pathogen in plants. Transgenic plants exhibiting improved immunity against fungal pathogen are also provided in the present invention.
摘要:
Polynucleotides isolated from chickpea are disclosed herein. The disclosed polynucleotides of the present invention provide genotype-dependent spatial information on the presence and relative abundance of each gene. The transcriptomic analysis of the polynucleotides revealed (649) non-cannonical genes besides many unexpected candidates with known biochemical functions, which have never been associated with pathostress-responsive transcriptome. The polynucleotides disclosed in the present invention can be used as a molecular tool for isolation of novel genes from plants that can be used for plant improvement. Further, the polynucleotide responsible for improving immunity against fungal pathogen in plants is disclosed herein. The present invention also provides a method of improving immunity against fungal pathogen in plants. Transgenic plants exhibiting improved immunity against fungal pathogen are also provided in the present invention.
摘要:
The present invention relates to environmental stress responsive protein ferritin (CaFer1) of chickpea. The invention discloses identification, isolation and cloning of ECM-localized ferritin (CaFer1) of chickpea and its multifunctional role in nutrient uptake, storage and stress tolerance. Comparative proteomic analysis of the chickpea extra-cellular (ECM) was performed to identify novel components of dehydration stress signaling. In addition, the present invention relates a method for producing environmental stress tolerant transgenic plants over-expressing the said CaFer1 gene. The present invention further provides dehydration stress tolerant transgenic plants overexpressing dehydration-responsive extra cellular matrix (ECM) protein ferritin (CaFer1).
摘要:
The present invention relates to environmental stress responsive protein ferritin (CaFer1) of chickpea. The invention discloses identification, isolation and cloning of ECM-localized ferritin (CaFer1) of chickpea and its multifunctional role in nutrient uptake, storage and stress tolerance. Comparative proteomic analysis of the chickpea extra-cellular (ECM) was performed to identify novel components of dehydration stress signaling. In addition, the present invention relates a method for producing environmental stress tolerant transgenic plants over-expressing the said CaFer1 gene. The present invention further provides dehydration stress tolerant transgenic plants overexpressing dehydration-responsive extra cellular matrix (ECM) protein ferritin (CaFer1).