摘要:
In a fuel cell stack constituting a fuel cell module, electrolyte/electrode assemblies and separators are alternately laminated. An electrolyte/electrode assembly and a terminal separator are arranged on one end of the fuel cell stack in the lamination direction in this order outwardly, and a dummy electrolyte/electrode assembly and a terminal separator are arranged on the other end of the fuel cell stack in the lamination direction in this order outwardly. The dummy electrolyte/electrode assembly is so formed as to have the same shape as the electrolyte/electrode assemblies, while having conductivity but not having a power generation function.
摘要:
In a fuel cell stack constituting a fuel cell module, electrolyte/electrode assemblies and separators are alternately laminated. An electrolyte/electrode assembly and a terminal separator are arranged on one end of the fuel cell stack in the lamination direction in this order outwardly, and a dummy electrolyte/electrode assembly and a terminal separator are arranged on the other end of the fuel cell stack in the lamination direction in this order outwardly. The dummy electrolyte/electrode assembly is so formed as to have the same shape as the electrolyte/electrode assemblies, while having conductivity but not having a power generation function.
摘要:
In a fuel cell stack constituting a fuel cell module, electrolyte/electrode assemblies and separators are alternately laminated. An electrolyte/electrode assembly is arranged on one end of the fuel cell stack in the lamination direction, while a separator is arranged on the other end of the fuel cell stack in the lamination direction. A terminal separator is arranged adjacent to the electrolyte/electrode assembly, while a load relaxation member is arranged adjacent to the separator. The terminal separator controls the supply of a fuel gas to a fuel gas channel, and the load relaxation member is configured of a laminate of a plurality of flat metal plates.
摘要:
In a fuel cell stack constituting a fuel cell module, electrolyte/electrode assemblies and separators are alternately laminated. An electrolyte/electrode assembly is arranged on one end of the fuel cell stack in the lamination direction, while a separator is arranged on the other end of the fuel cell stack in the lamination direction. A terminal separator is arranged adjacent to the electrolyte/electrode assembly, while a load relaxation member is arranged adjacent to the separator. The terminal separator controls the supply of a fuel gas to a fuel gas channel, and the load relaxation member is configured of a laminate of a plurality of flat metal plates.
摘要:
A fuel cell includes electrolyte electrode assemblies and a pair of separators sandwiching the electrolyte electrode assemblies. The separator includes a plurality of circular disks, and a plurality of protrusions forming a fuel gas channel for supplying a fuel gas along an electrode surface of an anode are provided on a surface of each of the circular disks. Further, a deformable electrically conductive mesh member is provided on a surface of the circular disk. The deformable elastically conductive mesh member forms an oxygen-containing gas channel for supplying an oxygen-containing gas along a cathode, and tightly contacts the cathode.
摘要:
A fuel cell system includes a fuel cell module for generating electrical energy by electrochemical reactions of a fuel gas and an oxygen-containing gas, and a condenser for condensing water vapor in an exhaust gas discharged from the fuel cell module by heat exchange between the exhaust gas and a coolant to collect the condensed water and supplying the collected condensed water to the fuel cell module. The condenser includes an air cooling condenser using the oxygen-containing gas as the coolant and a water cooling condenser using hot water stored in a hot water tank as the coolant. A thermoelectric conversion mechanism for performing thermoelectric conversion by a temperature difference between the exhaust gas and the oxygen-containing gas is provided between the air cooling condenser and the water cooling condenser.
摘要:
A fuel cell module includes a fuel cell stack, a partial oxidation reformer for reforming a mixed gas of a raw fuel and an oxygen-containing gas, an exhaust gas combustor for combusting a fuel exhaust gas and an oxygen-containing exhaust gas discharged from the fuel cell stack thereby to produce a combustion gas, and a heat exchanger for raising the temperature of the oxygen-containing gas by heat exchange with the combustion gas. The heat exchanger is provided on one side of the fuel cell stack, and the partial oxidation reformer and the exhaust gas combustor are provided on the other side of the fuel cell stack. The partial oxidation reformer is provided so as to surround the exhaust gas combustor.
摘要:
A catalyst particle is composed of an inner particle and an outermost layer that includes platinum and covers the inner particle. The inner particle includes on at least a surface thereof a first oxide having an oxygen defect.
摘要:
A casing of a fuel cell system is divided into a module area, a first fluid supply area, a second fluid supply area, and an electric parts area. The first fluid supply area is provided on a first side surface of the module area, and an electric parts area is provided on a second side surface of the module area. The second fluid supply area is provided under a bottom surface of the module area. A fuel cell module and a combustor are provided in the module area.
摘要:
The present invention provides a fuel cell stack that has a separator arranged between fuel cells, the separator including: a sandwiching section which sandwiches an electrolyte electrode assembly and includes a fuel gas channel and a separately provided oxygen-containing gas channel; a bridge which is connected to the sandwiching section and includes a reactant gas supply channel; a reactant gas supply section which is connected to the bridge and includes a reactant gas supply passage; and a connecting section that connects the sandwiching section to the bridge.