Abstract:
The invention relates to the use of a gas or liquid-jet curtain generated by spraying non-flammable gases or liquids for diluting and/or ejecting clouds of flammable gases, the density of which does not exceed the density of air, from containments that have one or more outer openings, and also to a method for diluting and/or ejecting clouds of flammable gases, the density of which does not exceed the density of air, from containments that have one or more outer openings, wherein, by spraying non-flammable gases or liquids at at least one outer opening, a gas or liquid-jet curtain is generated that dilutes the clouds of flammable gases situated in the containment or bears them in the direction of the at least one outer opening and thus ejects them.
Abstract:
The invention relates to the use of a gas or liquid-jet curtain generated by spraying non-flammable gases or liquids for diluting and/or ejecting clouds of flammable gases, the density of which does not exceed the density of air, from containments that have one or more outer openings, and also to a method for diluting and/or ejecting clouds of flammable gases, the density of which does not exceed the density of air, from containments that have one or more outer openings, wherein, by spraying non-flammable gases or liquids at at least one outer opening, a gas or liquid-jet curtain is generated that dilutes the clouds of flammable gases situated in the containment or bears them in the direction of the at least one outer opening and thus ejects them.
Abstract:
The invention relates to a process for preparing an isocyanate, which involves contacting fluid streams of amine, phosgene and inert medium in at least one mixing device, such that an inert medium stream is metered at least between one amine stream and one phosgene stream within the mixing device, and then reacting an amine with phosgene in a reaction chamber to form an isocyanate. In this process the inert medium stream is metered such that a point of first contact of the amine and the phosgene occurs at a distance from a surface of the mixing device, and a turbulent flow is present in the reaction chamber.