DEEP LEARNING MODEL BASED DATA GENERATION
    1.
    发明公开

    公开(公告)号:US20240028909A1

    公开(公告)日:2024-01-25

    申请号:US18478833

    申请日:2023-09-29

    CPC classification number: G06N3/096

    Abstract: A data generation method based on a deep learning model and a training method is provided. The data generation method includes: determining an initial input of the deep learning model based on input data; obtaining a first output of the model, where in response to the model determining that generating a reply based on the initial input requires calling a first functional component different from the deep learning model, the first output includes a first token for calling the first functional component and a first intermediate inquiry determined based on the initial input and recognizable by the first functional component; obtaining a first intermediate result determined by the first functional component based on the first intermediate inquiry; determining a second input for the model based on the initial input and the first intermediate result; and obtaining a second output of the model for generating a reply to the initial input.

    AFFINITY PREDICTION METHOD AND APPARATUS, METHOD AND APPARATUS FOR TRAINING AFFINITY PREDICTION MODEL, DEVICE AND MEDIUM

    公开(公告)号:US20220215899A1

    公开(公告)日:2022-07-07

    申请号:US17557691

    申请日:2021-12-21

    Abstract: The present disclosure discloses an affinity prediction method and apparatus, a method and apparatus for training an affinity prediction model, a device and a medium, and relates to the field of artificial intelligence technologies, such as machine learning technologies, smart medical technologies, or the like. An implementation includes: collecting a plurality of training samples, each training sample including information of a training target, information of a training drug and a test data set corresponding to the training target; and training an affinity prediction model using the plurality of training samples. In addition, there is further disclosed the affinity prediction method. The technology in the present disclosure may effectively improve accuracy and a training effect of the trained affinity prediction model. During an affinity prediction, accuracy of a predicted affinity of a target to be detected with a drug to be detected may be higher by acquiring a test data set corresponding to the target to be detected to participate in the prediction.

    METHOD OF CONSTRUCTING NETWORK MODEL FOR DEEP LEARNING, DEVICE, AND STORAGE MEDIUM

    公开(公告)号:US20220058490A1

    公开(公告)日:2022-02-24

    申请号:US17519815

    申请日:2021-11-05

    Abstract: A method and apparatus of constructing a network model for deep learning, a device, and a storage medium, which relate to artificial intelligence, and in particular to a field of deep learning. The method of constructing the network model for deep learning includes: determining an execution mode for executing codes, based on a mode parameter; executing the codes by using a first component, which is executable in a first execution mode, through a syntax element in the codes, in response to determining that the execution mode is the first execution mode; and executing the codes by using a second component, which is executable in a second execution mode, through the syntax element, in response to determining that the execution mode is the second execution mode; wherein the first component and the second component have the same component interface, and the syntax element corresponds to the component interface.

    DEEP LEARNING FRAMEWORK SCHEDULING

    公开(公告)号:US20220222111A1

    公开(公告)日:2022-07-14

    申请号:US17707895

    申请日:2022-03-29

    Abstract: A scheduling method for a deep learning framework, a scheduling apparatus, an electronic device, a storage medium, and a program product is provided, and can be used in the field of artificial intelligence, especially in the fields of machine learning, deep learning, etc. The method includes: receiving a processing request for processing a plurality of tasks by using a dedicated processing unit, the processing request including scheduling requirements for the plurality of tasks, and each of the plurality of tasks being associated with execution of multi-batch data processing; and scheduling, based on the scheduling requirements for the plurality of tasks in batches of data, the dedicated processing unit to process the plurality of tasks.

Patent Agency Ranking