MULTIMODAL DATA GENERATION
    1.
    发明申请

    公开(公告)号:US20250094713A1

    公开(公告)日:2025-03-20

    申请号:US18967529

    申请日:2024-12-03

    Abstract: A multimodal data generation method is provided. The method includes: inputting a query data sequence into a multimodal model, to obtain a plurality of tokens in a response data sequence, where a current token is generated through the following operations: inputting the query data sequence and a current response data sequence into the multimodal model, so that the multimodal model generates the current token based on the query data sequence and the current response data sequence, in response to determining that the current token belongs to a first data modality; or inputting the query data sequence and a current response data sequence into the multimodal model, so that the multimodal model denoises an initial token sequence based on the query data sequence and the current response data sequence, to generate a result token sequence, in response to determining that the current token belongs to a second data modality.

    MODEL TRAINING CONTROL METHOD BASED ON ASYNCHRONOUS FEDERATED LEARNING, ELECTRONIC DEVICE AND STORAGE MEDIUM

    公开(公告)号:US20240086717A1

    公开(公告)日:2024-03-14

    申请号:US18098514

    申请日:2023-01-18

    CPC classification number: G06N3/098

    Abstract: Disclosed is a model training control method based on asynchronous federated learning, an electronic device and a storage medium, relating to data processing technical field, and especially to technical fields such as edge computing and machine learning. The method includes: sending a first parameter of a first global model to a plurality of edge devices; receiving a second parameter of a second global model returned by a first edge device of plurality of edge devices, the second global model being a global model obtained after the first edge device trains the first global model according to a local data set; and sending a third parameter of a third global model to a second edge device of the plurality of edge devices in a case of the third global model is obtained based on aggregation of at least one second global model.

    DEEP LEARNING MODEL BASED DATA GENERATION
    4.
    发明公开

    公开(公告)号:US20240028909A1

    公开(公告)日:2024-01-25

    申请号:US18478833

    申请日:2023-09-29

    CPC classification number: G06N3/096

    Abstract: A data generation method based on a deep learning model and a training method is provided. The data generation method includes: determining an initial input of the deep learning model based on input data; obtaining a first output of the model, where in response to the model determining that generating a reply based on the initial input requires calling a first functional component different from the deep learning model, the first output includes a first token for calling the first functional component and a first intermediate inquiry determined based on the initial input and recognizable by the first functional component; obtaining a first intermediate result determined by the first functional component based on the first intermediate inquiry; determining a second input for the model based on the initial input and the first intermediate result; and obtaining a second output of the model for generating a reply to the initial input.

    METHOD FOR PROCESSING INFORMATION

    公开(公告)号:US20240419484A1

    公开(公告)日:2024-12-19

    申请号:US18817035

    申请日:2024-08-27

    Abstract: A method for processing information is provided. The method includes obtaining input information to be processed. The method further includes determining execution information associated with processing of the input information. The execution information includes at least one of memory information to be retrieved or tool information to be invoked. The method further includes obtaining, by using the execution information, at least one piece of processing result information corresponding to the processing of the input information. The method further includes the at least one piece of processing result information to generate output information for feedback.

    METHOD AND APPARATUS FOR TRAINING MODEL, AND METHOD AND APPARATUS FOR PREDICTING TEXT

    公开(公告)号:US20220129768A1

    公开(公告)日:2022-04-28

    申请号:US17646851

    申请日:2022-01-03

    Abstract: The present disclosure provides a method and apparatus for training a model. The method can include: acquiring at least one paragraph text, each paragraph text comprising a plurality of fine-grained samples; processing a fine-grained sample in the each paragraph text to obtain a coarse-grained sample; annotating the coarse-grained sample in the each paragraph text and obscuring one coarse-grained sample using a mask of one fine-grained sample to obtain a training sample set, wherein the training sample set comprises a plurality of annotated texts, and each annotated text comprises at least one of a fine-grained sample or an annotated coarse-grained sample; and training a fine-grained model using the training sample set to obtain a trained fine-grained model, the fine-grained model being used to learn content of a previous fine grain size and predict content of an adjacent coarse grain size.

    QUERY ANSWERING METHOD BASED ON LARGE MODEL, ELECTRONIC DEVICE, STORAGE MEDIUM, AND INTELLIGENT AGENT

    公开(公告)号:US20250094460A1

    公开(公告)日:2025-03-20

    申请号:US18969597

    申请日:2024-12-05

    Abstract: A query answering method, an electronic device, a storage medium, and an intelligent agent are provided, which relate to a field of artificial intelligence technology, and in particular to fields of large model, intelligent search and information processing technology. The method includes: inputting, in response to a retrieval content set retrieved based on a query, the query, the retrieval content set and prompt information for answer generation into the large model, so that the large model performs operations of: processing, based on a current task in the prompt information and the query, a current text corresponding to the retrieval content set to obtain a processed text, where the current task is determined based on a task execution order in the prompt information; and obtaining, in a case of determining that the processed text meets a preset condition, an answer to the query based on the processed text.

Patent Agency Ranking