Abstract:
There is described an arteriovenous fistula stent, having a tubular body comprising a series of sinusoidal shaped struts along the length of the tubular body. A plurality of curvilinear connectors extend between and are attached to adjacent struts wherein a first end of a connector is attached to a distal face of a proximal strut apex and a second end of a connector is attached to a proximal face of a distal strut apex. A pair of unconnected strut apexes are between pairs of connected apexes. When the tubular body is in a stowed configuration a proximal aperture and a distal aperture are circular and when the tubular body is in a deployed configuration the distal aperture is oblong or ovoid. There is also described a method for inserting a stent for use in creation of an arteriovenous fistula by identifying a candidate artery and a candidate vein and dissecting the candidate vein. Next, inserting a stent into the vein and creating a breach in the candidate artery at a desired angle and location. Next, introducing the stent and vein into the candidate artery and forming the stent into a curvature angle selected to minimize turbulent blood flow in an anastomosis formed by the vein and the artery. Optionally, there is a step of fastening a distal portion of the stent to the artery.
Abstract:
There is described a platform device for use in forming an anastomosis and maintaining a desired curvature of a lumen in a desired shape during an anastomosis assistance period. The platform is formed from one or more bioabsorbable or biodegradable polymer filaments. There is also described a method for inserting a platform device for use in creation of an arteriovenous fistula by identifying a candidate artery and a candidate vein and dissecting the candidate vein. Next, inserting a platform device into the vein and creating a breach in the candidate artery at a desired angle and location. Next, introducing the platform device and vein into the candidate artery and forming the platform device into a curvature angle selected to minimize turbulent blood flow in an anastomosis formed by the vein and the artery. The platform may also be used to maintain potency of supply blood vessels and/or organ blood vessels or the lumens daring an organ transplant procedure.
Abstract:
There is described an arteriovenous fistula stent, having a tubular body comprising a series of sinusoidal shaped struts along the length of the tubular body. A plurality of curvilinear connectors extend between and are attached to adjacent struts wherein a first end of a connector is attached to a distal face of a proximal strut apex and a second end of a connector is attached to a proximal face of a distal strut apex. A pair of unconnected strut apexes are between pairs of connected apexes. When the tubular body is in a stowed configuration a proximal aperture and a distal aperture are circular and when the tubular body is in a deployed configuration the distal aperture is oblong or ovoid. There is also described a method for inserting a stent for use in creation of an arteriovenous fistula by identifying a candidate artery and a candidate vein and dissecting the candidate vein. Next, inserting a stent into the vein and creating a breach in the candidate artery at a desired angle and location. Next, introducing the stent and vein into the candidate artery and forming the stent into a curvature angle selected to minimize turbulent blood flow in an anastomosis formed by the vein and the artery. Optionally, there is a step of fastening a distal portion of the stent to the artery.
Abstract:
There is described a platform device for use in forming an anastomosis and maintaining a desired curvature of a lumen in a desired shape during an anastomosis assistance period. The platform is formed from one or more bioabsorbable or biodegradable polymer filaments. There is also described a method for inserting a platform device for use in creation of an arteriovenous fistula by identifying a candidate artery and a candidate vein and dissecting the candidate vein. Next, inserting a platform device into the vein and creating a breach in the candidate artery at a desired angle and location. Next, introducing the platform device and vein into the candidate artery and forming the platform device into a curvature angle selected to minimize turbulent blood flow in an anastomosis formed by the vein and the artery. The platform may also be used to maintain potency of supply blood vessels and/or organ blood vessels or the lumens during an organ transplant procedure.
Abstract:
There is described a platform device for use in forming an anastomosis and maintaining a desired curvature of a lumen in a desired shape during an anastomosis assistance period. The platform is formed from one or more bioabsorbable or biodegradable polymer filaments. There is also described a method for inserting a platform device for use in creation of an arteriovenous fistula by identifying a candidate artery and a candidate vein and dissecting the candidate vein. Next, inserting a platform device into the vein and creating a breach in the candidate artery at a desired angle and location. Next, introducing the platform device and vein into the candidate artery and forming the platform device into a curvature angle selected to minimize turbulent blood flow in an anastomosis formed by the vein and the artery. The platform may also be used to maintain potency of supply blood vessels and/or organ blood vessels or the lumens during an organ transplant procedure.
Abstract:
There is described a platform device for use in forming an anastomosis and maintaining a desired curvature of a lumen in a desired shape during an anastomosis assistance period. The platform is formed from one or more bioabsorbable or biodegradable polymer filaments. There is also described a method for inserting a platform device for use in creation of an arteriovenous fistula by identifying a candidate artery and a candidate vein and dissecting the candidate vein. Next, inserting a platform device into the vein and creating a breach in the candidate artery at a desired angle and location. Next, introducing the platform device and vein into the candidate artery and forming the platform device into a curvature angle selected to minimize turbulent blood flow in an anastomosis formed by the vein and the artery. The platform May also be used to maintain potency of supply blood vessels and/or organ blood vessels or the lumens daring an organ transplant procedure.
Abstract:
There is described an arteriovenous fistula stent, having a tubular body comprising a series of sinusoidal shaped struts along the length of the tubular body. A plurality of curvilinear connectors extend between and are attached to adjacent struts wherein a first end of a connector is attached to a distal face of a proximal strut apex and a second end of a connector is attached to a proximal face of a distal strut apex. A pair of unconnected strut apexes are between pairs of connected apexes. When the tubular body is in a stowed configuration a proximal aperture and a distal aperture are circular and when the tubular body is in a deployed configuration the distal aperture is oblong or ovoid. There is also described a method for inserting a stent for use in creation of an arteriovenous fistula by identifying a candidate artery and a candidate vein and dissecting the candidate vein. Next, inserting a stent into the vein and creating a breach in the candidate artery at a desired angle and location. Next, introducing the stent and vein into the candidate artery and forming the stent into a curvature angle selected to minimize turbulent blood flow in an anastomosis formed by the vein and the artery. Optionally, there is a step of fastening a distal portion of the stent to the artery.
Abstract:
There is described an arteriovenous fistula stent, having a tubular body comprising a series of sinusoidal shaped struts along the length of the tubular body. A plurality of curvilinear connectors extend between and are attached to adjacent struts wherein a first end of a connector is attached to a distal face of a proximal strut apex and a second end of a connector is attached to a proximal face of a distal strut apex. A pair of unconnected strut apexes are between pairs of connected apexes. When the tubular body is in a stowed configuration a proximal aperture and a distal aperture are circular and when the tubular body is in a deployed configuration the distal aperture is oblong or ovoid. There is also described a method for inserting a stent for use in creation of an arteriovenous fistula by identifying a candidate artery and a candidate vein and dissecting the candidate vein. Next, inserting a stent into the vein and creating a breach in the candidate artery at a desired angle and location. Next, introducing the stent and vein into the candidate artery and forming the stent into a curvature angle selected to minimize turbulent blood flow in an anastomosis formed by the vein and the artery. Optionally, there is a step of fastening a distal portion of the stent to the artery.
Abstract:
There is described an arteriovenous fistula stent, having a tubular body comprising a series of sinusoidal shaped struts along the length of the tubular body. A plurality of curvilinear connectors extend between and are attached to adjacent struts wherein a first end of a connector is attached to a distal face of a proximal strut apex and a second end of a connector is attached to a proximal face of a distal strut apex. A pair of unconnected strut apexes are between pairs of connected apexes. When the tubular body is in a stowed configuration a proximal aperture and a distal aperture are circular and when the tubular body is in a deployed configuration the distal aperture is oblong or ovoid. There is also described a method for inserting a stent for use in creation of an arteriovenous fistula by identifying a candidate artery and a candidate vein and dissecting the candidate vein. Next, inserting a stent into the vein and creating a breach in the candidate artery at a desired angle and location. Next, introducing the stent and vein into the candidate artery and forming the stent into a curvature angle selected to minimize turbulent blood flow in an anastomosis formed by the vein and the artery. Optionally, there is a step of fastening a distal portion of the start to the artery.
Abstract:
There is described a platform device for use in forming an anastomosis and maintaining a desired curvature of a lumen in a desired shape during an anastomosis assistance period. The platform is formed from one or more bioabsorbable or biodegradable polymer filaments. There is also described a method for inserting a platform device for use in creation of an arteriovenous fistula by identifying a candidate artery and a candidate vein and dissecting the candidate vein. Next, inserting a platform device into the vein and creating a breach in the candidate artery at a desired angle and location. Next, introducing the platform device and vein into the candidate artery and forming the platform device into a curvature angle selected to minimize turbulent blood flow in an anastomosis formed by the vein and the artery. The platform may also be used to maintain potency of supply blood vessels and/or organ blood vessels or the lumens during an organ transplant procedure.