Abstract:
The present invention discloses a monochrome OLED and a method for manufacturing the same, and an OLED display panel, which can improve the performance of an OLED. A monochrome OLED according to an embodiment of the invention comprises a luminescent layer, wherein the luminescent layer comprises at least one luminescent sublayer; and at least one carrier control layer that is adjacent to the luminescent sublayer, wherein the carrier control layer is adapted to control the concentration ratio of carriers with different polarities in the luminescent layer.
Abstract:
This disclosure provides an OLED light-emitting device, a production method thereof as well as a display apparatus, and relates to the technical field of OLED display, which can enhance the internal quantum efficiency of a blue OLED light-emitting device. This OLED light-emitting device comprises a substrate, and an anode, a hole transport layer, a blue light-emitting layer and a cathode provided on the substrate; the OLED light-emitting device further comprises an Ag nanolayer located between the anode and the hole transport layer; wherein the blue light-emitting layer is a blue phosphorescent light-emitting layer; the absorption spectrum of the Ag nanolayer overlaps the emission spectrum of the blue phosphorescent light-emitting layer, and the blue phosphorescent light-emitting layer is located within the penetration depth of surface plasma of Ag nanoparticles in the Ag nanolayer. It is used in the production of a blue OLED light-emitting device and a display apparatus comprising the same.
Abstract:
The present disclosure provides a display back plate and a fabricating method thereof and a display device. The display back plate includes a base layer. A plurality of recesses are formed in the base layer, and a plurality of sub-pixels are formed in the plurality of recesses. The sub-pixel includes a first electrode layer, which is formed in the recess, a light-emitting material layer, which is formed on the first electrode layer, and a second electrode layer, which is formed on the light-emitting material layer. Thickness differences exist among a plurality of the light-emitting material layers, and upper surfaces of the plurality of light-emitting material layers are positioned on the same plane.
Abstract:
The disclosure provides a mask plate assembly, a method for fabricating an electroluminescent layer, a display panel and a method for driving the same. The mask plate assembly includes a first color mask plate, a second color mask plate, and a third color mask plate each having a plurality of rectangular openings. First openings of the first color mask plate and second openings of the second color mask plate are of a length in a row direction, which is substantially twice as that of third openings of the third color mask plate in the row direction. When the respective mask plates are aligned with one another, the first openings, the second openings, and the third openings are arranged alternately in an order of a first opening, a third opening, a second opening, and another third opening.
Abstract:
The disclosure provides a mask plate assembly, a method for fabricating an electroluminescent layer, a display panel and a method for driving the same. The mask plate assembly includes a first color mask plate, a second color mask plate, and a third color mask plate each having a plurality of rectangular openings. First openings of the first color mask plate and second openings of the second color mask plate are of a length in a row direction, which is substantially twice as that of third openings of the third color mask plate in the row direction. When the respective mask plates are aligned with one another, the first openings, the second openings, and the third openings are arranged alternately in an order of a first opening, a third opening, a second opening, and another third opening.
Abstract:
The present disclosure provides an OLED display panel and a method for fabricating the same and an OLED display apparatus. The OLED display panel includes a light-emitting layer, the light-emitting layer includes white sub-pixels and color sub-pixels, the size of the white sub-pixel is equal to the sum of size of at least two of the color sub-pixels, and the number of the color sub-pixels is less than the number of color-forming primary colors. The OLED display panel further includes a color film, the color film including color blocks matching the color sub-pixels, the color blocks being disposed on a side of the light-emitting layer toward the display side and at positions corresponding to the positions where the white sub-pixels are located.
Abstract:
A method, a circuit and a display device for driving an organic light emitting diode, wherein a driving transistor (DTFT) for driving a display element is turned off by jumping one or more of a reference voltage input (Vref), a reset voltage input (Vinit) and a data signal input (Vdata) before beginning to output an EL high level (ELVDD) of a pixel compensation circuit and after beginning to output an EL low level (ELVSS), to overcome the splash screen phenomenon during power-up and direct current-direct current driving failure.
Abstract:
The application provides an organic light emitting device, a method of fabricating the organic light emitting device, and a display device. The organic light emitting device comprises an anode layer, a cathode layer, and a light emitting layer provided between the anode layer and the cathode layer, and further comprises a carrier velocity adjustment layer provided between the light emitting layer and at least one of the anode layer and the cathode layer, and the carrier velocity adjustment layer is used for adjusting an injection rate of a carrier.
Abstract:
An organic light-emitting diode and a method for preparing the same are disclosed. The organic light-emitting diode at least comprises a luminescent layer between an anode and a cathode, and the organic light-emitting diode further comprises at least two electron transport layers set between the luminescent layer and the cathode and an N-type doped layer set between every two adjacent electron transport layers. For the organic light-emitting diode of the invention, an electron transport material and an N-type dopant are sequentially evaporated in turn, and the electron injection and transportation capacity is improved by forming an N-type doping-like effect from interface dope effect and the diffusion of an N-type dopant, so that carrier concentration can be balanced, exciton utilization can be improved, and the photoelectric properties of the OLED device can be improved.