Abstract:
Embodiments of the invention disclose an array substrate and a fabrication method thereof, and a display device. The array substrate comprises a plurality of pixel units disposed on a base substrate, and the pixel unit comprises a thin-film transistor structure region and a display region other than the thin-film transistor structure region. A thin-film transistor structure is formed in the thin-film transistor structure region, an organic light-emitting diode is formed in the display region, and the thin-film transistor structure is configured to drive the organic light-emitting diode. A light-shielding layer is formed above the thin-film transistor structure in the thin-film transistor structure region, and the light-shielding layer is configured to block a blue light from entering the thin-film transistor structure.
Abstract:
The present invention discloses an organic electroluminescent display panel, comprising: a base substrate; a top-emitting type organic electroluminescent structure located on the base substrate, the organic electroluminescent structure comprising an anode, a light emitting layer and a cathode arranged in this order from the base substrate; and a packaging film covering the organic electroluminescent structure; the organic electroluminescent display panel further comprises a secondary electrode provided on the packaging film and electrically connected with the cathode through a via hole penetrating through the packaging film. Since the secondary electrode is additionally provided on the packaging film and is electrically connected with the cathode through the via hole penetrating through the packaging film, the secondary electrode electrically connected with the cathode can increase an equivalent thickness of the cathode and thus reduce the resistance of the cathode, which can avoid the problem of large voltage drop due to large resistance of the cathode when a thinner metal is used as the cathode, thereby can avoid damage of the organic electroluminescent display panel due to the larger voltage drop.
Abstract:
An array substrate, a manufacturing method thereof, a liquid crystal display panel and a display device are provided. The array substrate includes a base substrate, an active layer, a gate insulating layer and a gate electrode which are located on the base substrate; a first insulating layer, a source electrode, a second insulating layer and a pixel electrode which are stacked on the active layer, the gate insulating layer and the gate electrode, sequentially; and a first connecting part and a second connecting part arranged on a same layer with the pixel electrode; wherein, the first connecting part is electrically connected with the active layer and the source electrode, and the second connecting part is electrically connected with the active layer and the pixel electrode.
Abstract:
The present invention provides a display substrate, which includes an anode layer, a cathode layer and a luminous layer that is provided between the anode layer and the cathode layer, the anode layer including a plurality of anodes and the luminous layer including a plurality of luminous regions, wherein the display substrate further includes at least one assisting electrode, the assisting electrode being insulated and spaced from the anode, and the assisting electrode contacting with the cathode layer in parallel, such that a total resistance of the assisting electrode and the cathode layer connected in parallel is smaller than a resistance of the cathode layer alone. The IR drop in the cathode of the display substrate provided by the present invention is relatively small, such that loss of electric signals is relatively small in the cathode layer and the assisting electrode, thereby obtaining a relatively higher image quality.
Abstract:
Embodiments of the present invention disclose an array substrate comprising a base substrate and a plurality of pixel units disposed on the base substrate, the pixel unit comprising a transflective layer formed on the base substrate; a thin film transistor structure formed over the transflective layer; an organic light-emitting diode disposed in a pixel region of the pixel unit and driven by the thin film transistor structure, and in a direction away from the base substrate, the organic light-emitting diode sequentially comprising a first electrode that is transparent, an organic light-emitting layer and a second electrode for reflecting light; and a color filter, disposed between the second electrode of the organic light-emitting diode and the transflective layer; wherein the second electrode of the organic light-emitting diode and the transflective layer constitute a microcavity structure. Embodiments of the present invention also disclose a method for manufacturing the array substrate and a display device including the above array substrate.
Abstract:
Embodiments of the invention disclose an array substrate and a fabrication method thereof, and a display device. The array substrate comprises a plurality of pixel units disposed on a base substrate. Each pixel unit comprises a thin-film transistor region and a display region. A thin-film transistor structure is formed in the thin-film transistor region, and an organic light-emitting diode. The organic light-emitting diode comprises a transparent first electrode, a light-emitting layer, and a second electrode for reflecting light that are sequentially formed. A transflective layer is formed in the display region. A color filter film is formed in the display region and is disposed between the second electrode of the organic light-emitting diode and the transflective layer. The second electrode of the organic light-emitting diode and the transflective layer form a microcavity structure. The color filter films in the pixel units of different colors have different thicknesses.