METHOD AND APPARATUS FOR PROCESSING SYNTHETIC FEATURES, MODEL TRAINING METHOD, AND ELECTRONIC DEVICE

    公开(公告)号:US20230072240A1

    公开(公告)日:2023-03-09

    申请号:US17988168

    申请日:2022-11-16

    Abstract: A method for processing synthetic features is provided, and includes: the synthetic features to be evaluated and original features corresponding to the synthetic features are obtained. A feature extraction is performed on the synthetic features to be evaluated based on a number S of pre-trained samples, to obtain meta features with S samples. S is a positive integer. The meta features are input into the pre-trained meta feature evaluation model for a binary classification prediction, to obtain a probability of binary classification. Quality screening is performed on the synthetic features to be evaluated according to the probability of the binary classification, to obtain second synthetic features to be evaluated. The second synthetic features are classified in a good category. The second synthetic features and original features are input into a first classifier for evaluation. classified in a poor category.

    METHOD FOR TRAINING DECISION-MAKING MODEL PARAMETER, DECISION DETERMINATION METHOD, ELECTRONIC DEVICE, AND STORAGE MEDIUM

    公开(公告)号:US20230032324A1

    公开(公告)日:2023-02-02

    申请号:US17966127

    申请日:2022-10-14

    Abstract: A method for training a decision-making model parameter, a decision determination method, an electronic device, and a non-transitory computer-readable storage medium are provided. In the method, a perturbation parameter is generated according to a meta-parameter, and first observation information of a primary training environment is acquired based on the perturbation parameter. According to the first observation information, an evaluation parameter of the perturbation parameter is determined. According to the perturbation parameter and the evaluation parameter thereof, an updated meta-parameter is generated. The updated meta-parameter is determined as a target meta-parameter, when it is determined, according to the meta-parameter and the updated meta-parameter, that a condition for stopping primary training is met. According to the target meta-parameter, a target memory parameter corresponding to a secondary training task is determined, where the target memory parameter and the target meta-parameter are used to make a decision corresponding to a prediction task.

    QUERY METHOD AND DEVICE AND STORAGE MEDIUM

    公开(公告)号:US20220398244A1

    公开(公告)日:2022-12-15

    申请号:US17890366

    申请日:2022-08-18

    Abstract: A query method is provided and includes: acquiring association records, in which the association record is configured to indicate an execution area, execution time and user attribute data of an execution user, of a behavior; splitting the association record into behavior records based on attribute items included in the user attribute data of the association record, in which the behavior record is configured to indicate a mapping relationship between at least one of the attribute items and the execution area-the execution time; grouping the behavior records to determine behavior statistics information of each group; in which behavior records having the same attribute item, the same execution area and the same execution time belong to the same group; and displaying behavior statistics information of a target group in response to a query operation.

    MODEL TRAINING, IMAGE PROCESSING METHOD, DEVICE, STORAGE MEDIUM, AND PROGRAM PRODUCT

    公开(公告)号:US20210319262A1

    公开(公告)日:2021-10-14

    申请号:US17355347

    申请日:2021-06-23

    Abstract: The present application provides a model training, image processing method, device, storage medium, and program product relating to deep learning technology, which are able to screen auxiliary image data with image data for learning a target task, and further fuse the target image data and the auxiliary image data, so as to train a built and to-be-trained model with the fusion-processed fused image data. This implementation can increase the amount of data for training the model, and the data for training the model is determined is based on the target image data, which is suitable for learning the target task. Therefore, the solution provided by the present application can train an accurate target model even if the amount of target image data is not sufficient.

Patent Agency Ranking