Abstract:
The present invention discloses a method for retrieving a similar image based on visual saliencies and visual phrases, comprising: inputting an inquired image; calculating a saliency map of the inquired image; performing viewpoint shift on the saliency map by utilizing a viewpoint shift model, defining a saliency region as a circular region which taking a viewpoint as a center and R as a radius, and shifting the viewpoint for k times to obtain k saliency regions of the inquired image; extracting a visual word in each of the saliency regions of the inquired image, to constitute a visual phrase, and jointing k visual phrases to generate an image descriptor of the inquired image; obtaining an image descriptor for each image of an inquired image library; and calculating a similarity value between the inquired image and each image in the inquired image library depending on the image descriptors by utilizing a cosine similarity, to obtain an image similar to the inquired image from the inquired image library. Through the present invention, noise in expression of an image is reduced, so that the expression of the image in a computer may be more consistent with human understanding of the semantics of the image, presenting a better retrieving effect and a higher retrieving speed.
Abstract:
The present invention discloses a method for detecting a salient region of a stereoscopic image, comprising: step 1) calculating flow information of each pixel separately with respect to a left-eye view and a right-eye view of the stereoscopic image; step 2) matching the flow information, to obtain a parallax map; step 3) selecting one of the left-eye view and the right-eye view, dividing it into T non-overlapping square image blocks; step 4) calculating a parallax effect value for each of the image blocks of the parallax map; step 5) for each of the image blocks of the selected one of the left-eye view and the right-eye view, calculating a central bias feature value and a spatial dissimilarity value, and multiplying the three values, to obtain a saliency value of the image block; and step 6) obtaining a saliency gray scale map of the stereoscopic image from saliency values of the image blocks. The present invention provides a method for extracting stereoscopic saliency based on parallax effects and spatial dissimilarity, acquiring depth information by utilizing parallax, and combining visual central bias feature and spatial dissimilarity to realize more accurate detection of a stereoscopic salient region.
Abstract:
A method of establishing a 3D saliency model based on 3D contrast and depth weight, includes dividing left view of 3D image pair into multiple regions by super-pixel segmentation method, synthesizing a set of features with color and disparity information to describe each region, and using color compactness as weight of disparity in region feature component, calculating feature contrast of a region to surrounding regions; obtaining background prior on depth of disparity map, and improving depth saliency through combining the background prior and the color compactness; taking Gaussian distance between the depth saliency and regions as weight of feature contrast, obtaining initial 3D saliency by adding the weight of the feature contrast; enhancing the initial 3D saliency by 2D saliency and central bias weight.
Abstract:
The present invention discloses a method for detecting a salient region of a stereoscopic image, comprising: step 1) calculating flow information of each pixel separately with respect to a left-eye view and a right-eye view of the stereoscopic image; step 2) matching the flow information, to obtain a parallax map; step 3) selecting one of the left-eye view and the right-eye view, dividing it into T non-overlapping square image blocks; step 4) calculating a parallax effect value for each of the image blocks of the parallax map; step 5) for each of the image blocks of the selected one of the left-eye view and the right-eye view, calculating a central bias feature value and a spatial dissimilarity value, and multiplying the three values, to obtain a saliency value of the image block; and step 6) obtaining a saliency gray scale map of the stereoscopic image from saliency values of the image blocks. The present invention provides a method for extracting stereoscopic saliency based on parallax effects and spatial dissimilarity, acquiring depth information by utilizing parallax, and combining visual central bias feature and spatial dissimilarity to realize more accurate detection of a stereoscopic salient region.
Abstract:
The present invention relates to a clustering method based on iterations of neural networks, which comprises the following steps: step 1, initializing parameters of an extreme learning machine; step 2, randomly choosing samples of which number is equal to the number of clusters, each sample representing one cluster, forming an initial exemplar set and training the extreme learning machine; step 3, using current extreme learning machine to cluster samples, which generates a clustering result; step 4, choosing multiple samples from each cluster as exemplars for the cluster according to a rule; step 5, retraining the extreme learning machine by using the exemplars for each cluster obtained from step 4; and step 6, going back to step 3 to do iteration, otherwise obtaining and outputting clustering result until clustering result is steady or a maximal limit of the number of iterations is reached. The present invention resolves problems that how to realize clustering of high dimensional and nonlinear data space and that the prior art consumes a larger memory or need longer running time.
Abstract:
A method of establishing a 3D saliency model based on 3D contrast and depth weight, includes dividing left view of 3D image pair into multiple regions by super-pixel segmentation method, synthesizing a set of features with color and disparity information to describe each region, and using color compactness as weight of disparity in region feature component, calculating feature contrast of a region to surrounding regions; obtaining background prior on depth of disparity map, and improving depth saliency through combining the background prior and the color compactness; taking Gaussian distance between the depth saliency and regions as weight of feature contrast, obtaining initial 3D saliency by adding the weight of the feature contrast; enhancing the initial 3D saliency by 2D saliency and central bias weight.