Abstract:
A mechanism for folding a rotor blade that is rotatably coupled to a blade cuff about a blade-fold axis between an extended position and a folded position. The mechanism includes a swash plate configured to translate relative to a mast, a pitch link rotatably coupled to the swash plate, a pitch horn rotatably coupled to the pitch link, a crank coupled to the pitch horn, and a link rotatably coupled to the crank and rotatably coupled to the rotor blade. The pitch horn and the crank being configured to commonly rotate relative to the blade cuff about a crank axis in response to translation of the swash plate, wherein the crank axis passes through the blade cuff.
Abstract:
A gimbal lock mechanism for a rotor hub can include a cam member having a cuff lock lobe and a gimbal lock lobe. The cam member is configured so that rotation can cause the first cuff lobe to become adjacent to the root end of the rotor blade and at the same time causes the gimbal lock lobe to become adjacent to a gimbal so as to inhibit gimbaling of the gimbal. A first moveable pin can be located on the root end portion of the rotor blade and inserted into the cuff lock lobe to prevent pitch change of the rotor blade.
Abstract:
A gimbal lock mechanism for a rotor hub can include a cam member having a cuff lock lobe and a gimbal lock lobe. The cam member is configured so that rotation can cause the first cuff lobe to become adjacent to the root end of the rotor blade and at the same time causes the gimbal lock lobe to become adjacent to a gimbal so as to inhibit gimbaling of the gimbal. A first moveable pin can be located on the root end portion of the rotor blade and inserted into the cuff lock lobe to prevent pitch change of the rotor blade.
Abstract:
A mechanism for transitioning a tiltrotor aircraft between rotary and non rotary flight modes. The mechanism includes a gimbal lock positioned about a mast that is operable to selectively enable and disable a gimballing degree of freedom of a rotor assembly relative to the mast. A blade stop assembly, positioned about the mast, includes a plurality of arms having a radially contracted orientation and a radially extended orientation. A blade lock assembly is operably associated with each rotor blade assembly. Each blade lock assembly is operable to selectively enable and disable a folding degree of freedom and a pitching degree of freedom of the respective rotor blade assembly. A swash plate is operable to change the pitch of the rotor blade assemblies in the rotary flight mode and fold the rotor blade assemblies in the non rotary flight mode.
Abstract:
A rotor assembly for use in an aircraft comprising has a rotor hub, a spinner structure comprising a spinner opening, and a rotor blade received through the spinner opening. The rotor blade has a rotor root located proximate to the rotor hub. The rotor assembly also has a motive fairing face that at least partially rests along the rotor hub.
Abstract:
A rotor assembly for use in an aircraft comprising has a rotor hub, a spinner structure comprising a spinner opening, and a rotor blade received through the spinner opening. The rotor blade has a rotor root located proximate to the rotor hub. The rotor assembly also has a motive fairing face that at least partially rests along the rotor hub.
Abstract:
A propulsion assembly for a rotorcraft includes a mast and a proprotor hub assembly coupled to the mast and having a gimballing degree of freedom relative to the mast. The proprotor hub assembly includes a hook receiver. The propulsion assembly includes a gimbal lock positioned about the mast. The gimbal lock includes a locking ring and a gimbal lock hook. The gimbal lock is movable between a disengaged position and an engaged position relative to the proprotor hub assembly. The gimbal lock enables the gimballing degree of freedom in the disengaged position and disables the gimballing degree of freedom in the engaged position. The gimbal lock hook is hooked to the hook receiver in the engaged position to secure the locking ring to the proprotor hub assembly.
Abstract:
A propulsion assembly for a rotorcraft includes a mast and a proprotor hub assembly coupled to the mast and having a gimballing degree of freedom relative to the mast. The propulsion assembly includes a gimbal lock assembly positioned about the mast and including a plurality of radially outwardly extending and circumferentially distributed rollers. The gimbal lock assembly is movable between a disengaged position and an engaged position relative to the proprotor hub assembly. In the disengaged position, the gimbal lock assembly enables the gimballing degree of freedom. In the engaged position, the rollers of the gimbal lock assembly contact the proprotor hub assembly to disable the gimballing degree.
Abstract:
A mechanism for folding a rotor blade that is rotatably coupled to a blade cuff about a blade-fold axis between an extended position and a folded position. The mechanism includes a swash plate configured to translate relative to a mast, a pitch link rotatably coupled to the swash plate, a pitch horn rotatably coupled to the pitch link, a crank coupled to the pitch horn, and a link rotatably coupled to the crank and rotatably coupled to the rotor blade. The pitch horn and the crank being configured to commonly rotate relative to the blade cuff about a crank axis in response to translation of the swash plate, wherein the crank axis passes through the blade cuff.