Abstract:
Methods and systems for verification of indicia that do not require key management systems, and in which revocation of key pairs is easily performed without adding costs to the verification process are provided. Indicia are generated and authenticated utilizing an identity-based encryption (IBE) scheme. A key generating authority generates a private key for a PSD, distributes the private key securely to the PSD, and provides public information for use by a verification service when verifying cryptographic digital signatures generated with the private key. The corresponding public key is a string consisting of PSD information that is provided as part of the indicium. The verification service can verify the signature of each indicium by obtaining the public key string from the indicium, and utilizing the key generating authority's public information.
Abstract:
An electronic voting system includes a vote security device (VSD), a user interface for presenting a ballot to a voter, and an audit trail printer operatively coupled to the VSD. The printer prints an audit trail ballot only in response to verifying encrypted and/or digitally signed messages received from the VSD that indicates the voter's ballot selections. The printer is structured to allow the voter to view but not access the audit trail ballot. The voter is able to accept or reject the audit trail ballot using the user interface. If the ballot is rejected, the VSD causes the printer to print a rejection indicator on the ballot, and if the voter accepts the ballot, the VSD causes the printer to print an acceptance indicator on the ballot. A digitally signed record of the voter's ballot selections is generated and stored.
Abstract:
Methods and systems for providing confidentiality of communications sent via a network that is efficient, easy to implement, and does not require significant key management. The identity of each node of the routing path of a communication is encrypted utilizing an identity-based encryption scheme. This allows each node of the routing path to decrypt only those portions of the routing path necessary to send the communication to the next node. Thus, each node will only know the immediate previous node from which the communication came, and the next node to which the communication is to be sent. The remainder of the routing path of the communication, along with the original sender and intended recipient, remain confidential from any intermediate nodes in the routing path. Use of the identity-based encryption scheme removes the need for significant key management to maintain the encryption/decryption keys.
Abstract:
A method for detecting whether perforations are present on the edge of an image of a form, such as a check, includes obtaining a bitmap of the image, identifying a selected portion of the bitmap that corresponds to at least the edge and that includes a matrix of a plurality of rows and columns of brightness values, and selecting a particular one of the rows of brightness values. The method further includes performing a Fourier transform of the brightness values included in the particular selected row to generate a Fourier transform output, and determining whether a series of perforations is present based on the Fourier transform output. The method may also include steps wherein the brightness values are low pass filtered and wherein the values in the selected row are high pass filtered prior to the step of performing a Fourier transform.
Abstract:
A method of enabling a voter to vote by mail by using a secret vote code (SVC) that includes translating the SVC into a one-time code (OTC) valid only for the election, storing the OTC, and mailing to the voter a ballot, a return envelope, and a mechanism for enabling the SVC to be translated into a translated format. Further, the method includes receiving the return envelope from the voter that includes a completed ballot, the voter's signature, and the translated format, determining whether the signature obtained from the envelope matches a stored signature for the voter, obtaining a second one-time code based on the translated format and determining whether the second one-time code matches the stored one-time code. The ballot is counted only if it is determined that: (i) the signatures match, and (ii) the second one-time code matches the stored one-time code.
Abstract:
An electronic voting system includes a vote security device (VSD), a user interface for presenting a ballot to a voter, and an audit trail printer operatively coupled to the VSD. The printer prints an audit trail ballot only in response to verifying encrypted and/or digitally signed messages received from the VSD that indicates the voter's ballot selections. The printer is structured to allow the voter to view but not access the audit trail ballot. The voter is able to accept or reject the audit trail ballot using the user interface. If the ballot is rejected, the VSD causes the printer to print a rejection indicator on the ballot, and if the voter accepts the ballot, the VSD causes the printer to print an acceptance indicator on the ballot. A digitally signed record of the voter's ballot selections is generated and stored.
Abstract:
Methods and systems that provide privacy of signatures on envelopes containing ballots are provided. The envelope for returning ballots includes a flap with a window that aligns with a signature area on the envelope. The window appears opaque under normal lighting conditions, but appears transparent when illuminated with light having a predetermined wavelength. A movable signature stub is positioned on top of the signature area. The voter signs the back of the envelope on the signature stub, thereby imprinting a signature on the signature area by transferring a material from the signature stub to the signature area, and moves the signature stub. The flap of the envelope is then sealed, thereby covering the voter's signature in the signature area with the window of the envelope flap. To read the signature, light having the predetermined wavelength can be directed onto the window, thereby rendering the window transparent and the signature visible.
Abstract:
A method of enabling a voter to vote by mail by using a secret vote code (SVC) that includes translating the SVC into a one-time code (OTC) valid only for the election, storing the OTC, and mailing to the voter a ballot, a return envelope, and a mechanism for enabling the SVC to be translated into a translated format. Further, the method includes receiving the return envelope from the voter that includes a completed ballot, the voter's signature, and the translated format, determining whether the signature obtained from the envelope matches a stored signature for the voter, obtaining a second one-time code based on the translated format and determining whether the second one-time code matches the stored one-time code. The ballot is counted only if it is determined that: (i) the signatures match, and (ii) the second one-time code matches the stored one-time code.
Abstract:
A vote-by-mail return envelope that includes a pouch portion for containing the ballot and a stub portion on which the voter applies his/her signature and method for processing are provided. Each portion of the envelope contains a respective barcode that identifies the respective portion. When the envelope is received at the vote-counting location, the stub is separated from the pouch, thereby separating the voter's signature, name, etc. from the ballot. The signature is then verified from the stub, and subsequent processing of the pouch uses the pouch barcode identifier as a link to the stub barcode identifier and/or to the result of the signature verification, to determine whether the ballot in the pouch is eligible for counting or whether some remedial procedure is necessary.
Abstract:
Methods and systems that provide privacy of signatures on envelopes containing ballots are provided. The envelope for returning ballots includes a flap with a window that aligns with a signature area on the envelope. The window appears opaque under normal lighting conditions, but appears transparent when illuminated with light having a predetermined wavelength. A movable signature stub is positioned on top of the signature area. The voter signs the back of the envelope on the signature stub, thereby imprinting a signature on the signature area by transferring a material from the signature stub to the signature area, and moves the signature stub. The flap of the envelope is then sealed, thereby covering the voter's signature in the signature area with the window of the envelope flap. To read the signature, light having the predetermined wavelength can be directed onto the window, thereby rendering the window transparent and the signature visible.