摘要:
A multi-user augmented reality (AR) system operates without a previously acquired common reference by generating a reference image on the fly. The reference image is produced by capturing at least two images of a planar object and using the images to determine a pose (position and orientation) of a first mobile platform with respect to the planar object. Based on the orientation of the mobile platform, an image of the planar object, which may be one of the initial images or a subsequently captured image, is warped to produce the reference image of a front view of the planar object. The reference image may be produced by the mobile platform or by, e.g., a server. Other mobile platforms may determine their pose with respect to the planar object using the reference image to perform a multi-user augmented reality application.
摘要:
A multi-user augmented reality (AR) system operates without a previously acquired common reference by generating a reference image on the fly. The reference image is produced by capturing at least two images of a planar object and using the images to determine a pose (position and orientation) of a first mobile platform with respect to the planar object. Based on the orientation of the mobile platform, an image of the planar object, which may be one of the initial images or a subsequently captured image, is warped to produce the reference image of a front view of the planar object. The reference image may be produced by the mobile platform or by, e.g., a server. Other mobile platforms may determine their pose with respect to the planar object using the reference image to perform a multi-user augmented reality application.
摘要:
A reference patch of an unknown environment is generated on the fly for positioning and tracking. The reference patch is generated using a captured image of a planar object with two perpendicular sets of parallel lines. The planar object is detected in the image and axes of the world coordinate system are defined using the vanishing points for the two sets of parallel lines. The camera rotation is recovered based on the defined axes, and the reference patch of at least a portion of the image of the planar object is generated using the recovered camera rotation. The reference patch can then be used for vision based detection and tracking. The planar object may be detected in the image as sets of parallel lines or as a rectangle.
摘要:
A reference patch of an unknown environment is generated on the fly for positioning and tracking. The reference patch is generated using a captured image of a planar object with two perpendicular sets of parallel lines. The planar object is detected in the image and axes of the world coordinate system are defined using the vanishing points for the two sets of parallel lines. The camera rotation is recovered based on the defined axes, and the reference patch of at least a portion of the image of the planar object is generated using the recovered camera rotation. The reference patch can then be used for vision based detection and tracking. The planar object may be detected in the image as sets of parallel lines or as a rectangle.
摘要:
A homography between two captured images of a planar object is decomposed into at least one possible solution, and typically at least two ambiguous solutions. The ambiguity between the two solutions is removed, or a single solution validated, using measurements from orientation sensors. The measurements from orientation sensors may be used by comparing at least one of the yaw, pitch, and/or roll angles derived from a relative rotation matrix for the one or more solutions to a corresponding at least one of the yaw, pitch, and/or roll angles derived from the measurements from the orientation sensors.
摘要:
A homography between two captured images of a planar object is decomposed into at least one possible solution, and typically at least two ambiguous solutions. The ambiguity between the two solutions is removed, or a single solution validated, using measurements from orientation sensors. The measurements from orientation sensors may be used by comparing at least one of the yaw, pitch, and/or roll angles derived from a relative rotation matrix for the one or more solutions to a corresponding at least one of the yaw, pitch, and/or roll angles derived from the measurements from the orientation sensors.
摘要:
The homography between captured images of a planar object is determined and decomposed into at least one possible solution, and typically at least two ambiguous solutions. The removal of the ambiguity between the two solutions, or validation of a single solution, is performed using a viewing angle range. The viewing angle range may be used by comparing the viewing angle range to the orientation of each solution as derived from the rotation matrix resulting from the homography decomposition. Any solution with an orientation outside the viewing angle range may be eliminated as a solution.