摘要:
Provided is a reader for radio frequency identification (RFID) and a RFID system. A reader for RFID that receives a channel signal comprises a frequency oscillator generating an oscillating signal at a frequency that is offset by an offset frequency from a center frequency of the channel signal, a mixer mixing the channel signal with the oscillating signal that is offset, and a filter filtering a mixed frequency signal provided from the mixer. The reader for RFID and the RFID system are improved in reception for the wave identification using a listen before talk (LBT) mode for identifying an electronic tag.
摘要:
Provided is a terrestrial-digital multimedia broadcasting (T-DMB) and digital audio broadcasting (DAB) low intermediate frequency (IF) receiver. A T-DMB and DAB low IF receiver comprises a low noise amplifier (LNA), an image rejection down-conversion mixer, a low pass filter, an amplifier, a local oscillator, and a phase-locked loop. Particularly, the LNA, the image rejection down-conversion mixer, the low pass filter, the amplifier, the local oscillator, and the phase-locked loop are integrated in a monolithic semiconductor integrated circuit substrate. Using the T-DMB and DAB low IF receiver allows a removal of a conventional SAW filter and the T-DMB and DAB low IF receiver can be easily integrated in the monolithic semiconductor integrated circuit substrate, and manufactured at low costs.
摘要:
A terrestrial-digital multimedia broadcasting (T-DMB) and digital audio broadcasting (DAB) low intermediate frequency (IF) receiver comprises a low noise amplifier (LNA), an image rejection down-conversion mixer, a low pass filter, an amplifier, a local oscillator, a phase-locked loop, and an automatic gain controller (AGC). Particularly, the LNA, the image rejection down-conversion mixer, the low pass filter, the amplifier, the AGC, the local oscillator, and the phase-locked loop are integrated in monolithic semiconductor integrated circuit substrate. The AGC supplies a gain control signal to the LNA and the amplifier according to the magnitude of the RF signal, and the gain control signal is controlled by a null control signal based on a null signal comprised in a received radio frequency (RF) signal.
摘要:
The receiver comprises a variable gain amplification unit, a mixing unit, a filtering unit, and three compensation unit. Each compensation unit detects powers of the signal amplified in the variable gain amplification unit, the signal down-converted in the mixing unit and the signal filtered in the filtering unit. A gain of the variable gain amplification unit is adjusted based on the powers detected by three compensation units.
摘要:
Provided is a terrestrial-digital multimedia broadcasting (T-DMB) and digital audio broadcasting (DAB) low intermediate frequency (IF) receiver. A T-DMB and DAB low IF receiver comprises a low noise amplifier (LNA), an image rejection down-conversion mixer, a low pass filter, an amplifier, a local oscillator, a phase-locked loop, and at least one high pass filter. Particularly, the LNA, the image rejection down-conversion mixer, the low pass filter, the amplifier, the local oscillator, the phase-locked loop, and the high pass filter are integrated in a monolithic semiconductor integrated circuit substrate. The T-DMB and DAB low IF receiver allows a removal of a conventional SAW filter without degrading the performance of the receiver. Thus, the T-DMB and DAB low IF receiver can be easily integrated into a single and manufactured at low costs.
摘要:
A broadband variable gain amplifier with improved linearity and gain characteristic is provided. According to the present invention, the broadband variable gain amplifier comprises: an amplification unit for amplifying an input signal applied to an input terminal and outputting an amplified signal to an output terminal; and a gain control unit which is connected between the input and output terminals, and for controlling gain of said amplification unit, wherein said gain control unit comprises: a variable resistance unit whose resistance value is varied according to a control signal; and a broadband matching unit for proving an optimal impedance characteristic to the input terminal said amplification unit in a broad band, where in said variable gain resistance unit and said broadband matching unit is connected in parallel.
摘要:
The receiver comprises a variable gain amplification unit, a mixing unit, a filtering unit, and three compensation unit. Each compensation unit detects powers of the signal amplified in the variable gain amplification unit, the signal down-converted in the mixing unit and the signal filtered in the filtering unit. A gain of the variable gain amplification unit is adjusted based on the powers detected by three compensation units.
摘要:
Provided are a radio frequency identification (RFID) reader and a RFID system. Particularly, the RFID reader uses a listen before talk (LBT) mode to identify. A reader for RFID comprises a data path block receiving a tag data signal, a search path block receiving a channel search signal, and a path selection block selecting one of the data path block and the search path block.
摘要:
The present invention relates to a receiver chip formed on a monolithic semiconductor integrated circuit substrate. The receiver chip comprises a first receiver chip for receiving terrestrial digital multimedia broadcasting signals, a second receiver chip for receiving satellite digital multimedia broadcasting signals, and the monolithic semiconductor integrated circuit substrate. The first and second receiver chips are stacked and bonded on the monolithic semiconductor integrated circuit substrate.
摘要:
A signal processing apparatus for correcting DC offset in a communication system is provided. The signal processing apparatus comprises: a low noise amplifier (LNA) 301; a mixer 303 for mixing the output from said LNA 301 with local oscillation signal LO; a first offset correction amplifier 305 for amplifying output signal from said mixer 303 and for eliminating DC offset in the output signal in accordance with first control signal Vc31; a second offset correction amplifier 309 for amplifying output signal from said first offset correction amplifier 305 and for eliminating DC offset in the output signal in accordance with second control signal Vc32; a variable gain amplifier 311 for amplifying output from said second offset correction amplifier 309 wherein gain is controlled such that power level of output be maintained to a desired value; offset calibration mean 313 for calibrating DC offset in output from said variable gain amplifier 311; and offset correction mean 315 for outputting the first and second control signals Vc31 and Vc32 in accordance with the output from said offset calibration mean 313, to eliminate DC offset in the output from said variable gain amplifier 311.