Abstract:
A turbocharger turbine (10) having a turbine wheel (12) and a turbine housing (14) with a volute (20). The turbine housing (14) has dividing vanes (24) in the curved portion (22) of the volute (20) for use with a turbine (10) as mixed-flow or axial-flow. A valve (36) controls exhaust gas flow to one or both of an outer volute portion (26) and an inner volute portion (28) formed on each side of the dividing vanes (24).
Abstract:
A turbocharger (10) including variable turbine geometry has a turbine wheel (24) with a turbine axis of rotation (R1) that extends in an axial direction. The turbocharger (10) also has a plurality of guide vanes (34) that is selectively movable between a range of angular positions. Each one of the guide vanes (34) is supported for pivotal movement about a guide vane axis of rotation (R2) and each guide vane axis of rotation (R2) is non-parallel to the turbine axis of rotation (R1).
Abstract:
A turbocharger (10) including variable turbine geometry has a turbine wheel (24) with a turbine axis of rotation (R1) that extends in an axial direction. The turbocharger (10) also has a plurality of guide vanes (34) that is selectively movable between a range of angular positions. Each one of the guide vanes (34) is supported for pivotal movement about a guide vane axis of rotation (R2) and each guide vane axis of rotation (R2) is non-parallel to the turbine axis of rotation (R1).
Abstract:
To solve the problems of compressor wheel blade flow separation causing surge type noises when an exhaust gas recirculation (EGR) duct introduces into the compressor exhaust gases to be returned to the engine, the exhaust gas is fed into an annular volume, defined between inner and outer walls or an annular transition cavity shaped as a radially expanded, axially flattened cylindrical space in the compressor inlet, so that the generally unidirectional radial flow from an EGR duct is re-directed and organized as it is turned from generally radial to generally axial, merging with the general inlet flow and presenting the compressor wheel with airflow of “circumferentially uniform” flow velocity.
Abstract:
A turbocharger (10) has an improved wastegate valve assembly (45) wherein a port-controlling valve body (44) includes flow formations which serve to reduce exhaust gas flow in non-optimal directions transverse to an optimal flow direction in the direction of a wastegate passage (26). These flow formations serve to optimize or maximize the flow of exhaust gas in the optimal or primary flow direction as the exhaust gas flow turns through a turn angle (47) from an inlet direction (29) to the optimal flow direction.
Abstract:
A turbocharger (5) comprising a housing (10) including a compressor shroud (14) and a turbine shroud (12). A compressor wheel (18) is disposed in the compressor shroud (14) and includes a plurality of compressor blades (45, 46). Each compressor blade (45, 46) includes a leading edge (50, 51) and a compressor shroud contour edge (54, 55), wherein each compressor shroud contour edge (54, 55) is in close confronting relation to the compressor shroud (14). A turbine wheel (16) is disposed in the turbine shroud (12) and includes a plurality of turbine blades (26). Each turbine blade (26) includes a leading edge (30) and a turbine shroud contour edge (34), wherein each turbine shroud contour edge (34) is in close confronting relation to the turbine shroud (12). At least one of the compressor shroud (14) and turbine shroud (12) includes a plurality of grooves (70, 72) extending cross-wise with respect to the corresponding compressor or turbine shroud contour edges (34, 54, 55).
Abstract:
To solve the problems of compressor wheel blade flow separation causing surge type noises when an exhaust gas recirculation (EGR) duct introduces into the compressor exhaust gases to be returned to the engine, the exhaust gas is fed into an annular volume, defined between inner and outer walls or an annular transition cavity shaped as a radially expanded, axially flattened cylindrical space in the compressor inlet, so that the generally unidirectional radial flow from an EGR duct is re-directed and organized as it is turned from generally radial to generally axial, merging with the general inlet flow and presenting the compressor wheel with airflow of “circumferentially uniform” flow velocity.
Abstract:
A compressor oil seal comprising a thrust bearing (59) adapted for insertion into a turbocharger housing cavity (33), concentric with the turbocharger's compressor wheel shaft (11). An insert (360) is adapted for insertion into the cavity (33) adjacent the thrust bearing (59), wherein the thrust bearing (59) and insert (360) are configured to provide an oil drain cavity (35) therebetween. The oil seal also includes an oil flinger (340) that includes a flinger flange (382) and a sleeve portion (383) extending therefrom. The flinger flange (382) extends between the thrust bearing (59) and the insert (360). A plurality of spiral vane segments (74) are circumferentially spaced about the flinger flange (382). Each spiral vane segment (74) extends arcuately from a first end (372) to a second end (373). The spiral vane segments (74) are disposed between the flinger flange (382) and the insert (360). The spiral vane segments (74) may extend into a recess (363) formed into the insert (360), and the recess (363) may include at least one discharge port (370).
Abstract:
A turbocharger (5) comprising a housing (10) including a compressor shroud (14) and a turbine shroud (12). The turbocharger (5) further comprises compressor wheel (18) and a turbine wheel (16). The compressor wheel (18) includes a compressor hub (44) and a plurality of compressor blades (45, 46) extending radially from the compressor hub (44). Each compressor blade (45, 46) includes a leading edge (50, 51), a trailing edge (52, 53), and a compressor shroud contour edge (54, 55) extending therebetween. The turbine wheel (16) includes a turbine hub (24) and a plurality of turbine blades (26) extending radially from the turbine hub (24). Each turbine blade (26) including a leading edge (30), a trailing edge (32), and a turbine shroud contour edge (34) extending therebetween. At least one of the compressor and turbine blades includes an edge relief (40, 60, 61) formed along at least a portion of the corresponding compressor or turbine shroud contour edge.
Abstract:
A turbocharger (5) comprising a housing (10) including a compressor shroud (14) and a turbine shroud (12). A compressor wheel (18) is disposed in the compressor shroud (14) and includes a plurality of compressor blades (45, 46). Each compressor blade (45, 46) includes a leading edge (50, 51) and a compressor shroud contour edge (54, 55), wherein each compressor shroud contour edge (54, 55) is in close confronting relation to the compressor shroud (14). A turbine wheel (16) is disposed in the turbine shroud (12) and includes a plurality of turbine blades (26). Each turbine blade (26) includes a leading edge (30) and a turbine shroud contour edge (34), wherein each turbine shroud contour edge (34) is in close confronting relation to the turbine shroud (12). At least one of the compressor shroud (14) and turbine shroud (12) includes a plurality of grooves (70, 72) extending cross-wise with respect to the corresponding compressor or turbine shroud contour edges (34, 54, 55).