Abstract:
Disclosed is a glow plug diagnosis method of being able to diagnose the aging or fault of a glow plug without being affected by cooling associated with air intake/exhaust or fuel injection, the method including: a step (S102) of energizing a glow plug 1 in a predetermined manner when a key switch 11 of a vehicle is turned on; and a step (S106) of measuring the resistance value of the glow plug 1 when the energization of the glow plug 1 is started, and the resistance value of the glow plug when the energization of the glow plug 1 is started and then a change in the resistance value is saturated, and of calculating a change in the resistance value over time as a resistance value gradient, in which it is determined that the glow plug 1 is normal when the resistance value gradient exceeds a predetermined first gradient reference value a, and it is determined that the glow plug 1 is faulty, and a warning lamp or the like is lighted when the resistance value gradient is less than a predetermined second gradient reference value b (S112 and S118).
Abstract:
Disclosed is a glow plug diagnosis method of being able to diagnose the aging or fault of a glow plug without being affected by cooling associated with air intake/exhaust or fuel injection, the method including: a step (S102) of energizing a glow plug 1 in a predetermined manner when a key switch 11 of a vehicle is turned on; and a step (S106) of measuring the resistance value of the glow plug 1 when the energization of the glow plug 1 is started, and the resistance value of the glow plug when the energization of the glow plug 1 is started and then a change in the resistance value is saturated, and of calculating a change in the resistance value over time as a resistance value gradient, in which it is determined that the glow plug 1 is normal when the resistance value gradient exceeds a predetermined first gradient reference value a, and it is determined that the glow plug 1 is faulty, and a warning lamp or the like is lighted when the resistance value gradient is less than a predetermined second gradient reference value b (S112 and S118).
Abstract:
Breakage in a short period is suppressed by improving a heat dissipation property.A glow plug (1) that includes: a heater (11), a tip of which is inserted in a combustion chamber of an internal combustion engine; a cylindrical body (12) that supports abase end of the heater; a housing (14) that supports the cylindrical body in a state where a heating section of the heater is projected; and a pressure sensor (15) that is provided in the housing and detects a pressure in a combustion chamber includes: a pressure introduction chamber (142) that is formed between the pressure sensor and the cylindrical body in the housing; and a communication path (21) that is formed in at least one of the housing and the cylindrical body and communicates between the combustion chamber and the pressure introduction chamber.
Abstract:
A pressure-sensor-integrated glow plug which can increase reliability of a bonding portion between a ceramic heater and a metal-made outer sleeve while being manufactured with relatively simple manufacturing steps and, at the same time, can maintain airtightness over a long period, and a method of manufacturing such a pressure-sensor-integrated glow plug.
Abstract:
A pressure-sensor-integrated glow plug which can increase reliability of a bonding portion between a ceramic heater and a metal-made outer sleeve while being manufactured with relatively simple manufacturing steps and, at the same time, can maintain airtightness over a long period, and a method of manufacturing such a pressure-sensor-integrated glow plug.