Method for analyzing reflection curvature in seismic data volumes
    1.
    发明授权
    Method for analyzing reflection curvature in seismic data volumes 有权
    分析地震数据量反射曲率的方法

    公开(公告)号:US06662111B2

    公开(公告)日:2003-12-09

    申请号:US10179631

    申请日:2002-06-25

    IPC分类号: G01V128

    CPC分类号: G01V1/30

    摘要: A method of calculating reflection curvature in a seismic data volume wherein an apparent dip value is calculated in a first direction to generate a first apparent dip volume. A horizontal gradient is calculated in the first direction in the first apparent dip volume using a specified length scale to generate a first curvature volume. The process may be repeated one or more times, and the individual curvature volumes combined to generate a combined curvature volume for the seismic data volume.

    摘要翻译: 一种计算地震数据体积中的反射曲率的方法,其中在第一方向上计算表观倾角值以产生第一表观倾角体积。 在第一表观倾斜体积中的第一方向上使用规定的长度刻度来计算水平梯度以产生第一曲率体积。 该过程可以重复一次或多次,并且各曲率体积被组合以产生用于地震数据体积的组合曲率体积。

    Method for analyzing dip in seismic data volumes
    2.
    发明授权
    Method for analyzing dip in seismic data volumes 有权
    分析地震数据量下降的方法

    公开(公告)号:US06850864B2

    公开(公告)日:2005-02-01

    申请号:US10178607

    申请日:2002-06-24

    CPC分类号: G01V1/301 G01V1/288 G01V1/32

    摘要: A method of analyzing dip in a seismic data volume in which a horizontal gradient is calculated in a first direction in the seismic data volume. A vertical gradient is calculated at data locations in the seismic data volume corresponding to the locations at which the horizontal gradient was calculated. Dip is calculated in the first direction from the horizontal gradient in the first direction and the vertical gradient. Repetition of the process for the entire seismic data volume results in a dip volume.

    摘要翻译: 一种在地震数据体积中分析倾斜的方法,其中在地震数据体积中沿第一方向计算水平梯度。 在对应于计算水平梯度的位置的地震数据体中的数据位置处计算垂直梯度。 从第一方向的水平梯度和垂直梯度的第一方向计算汲取量。 重复整个地震数据量的过程导致倾斜体积。

    Method for classifying AVO data using an interpreter-trained neural network
    3.
    发明授权
    Method for classifying AVO data using an interpreter-trained neural network 有权
    使用解释器训练的神经网络对AVO数据进行分类的方法

    公开(公告)号:US06662112B2

    公开(公告)日:2003-12-09

    申请号:US10231902

    申请日:2002-08-29

    IPC分类号: G01V128

    CPC分类号: G01V1/32 G01V1/34

    摘要: AVO anomalies are classified in near-offset and far-offset seismic data volumes, by first calculating a plurality of initial AVO seismic attributes representative of the offset seismic data volumes. A probabilistic neural network is constructed from the calculated initial AVO seismic attributes. AVO anomaly classifications are calculated in a portion of the offset seismic data volumes. The preceding steps are repeated until the calculated AVO anomaly classifications in the portion of the offset seismic data volumes are satisfactory. AVO anomaly classifications are calculated throughout the offset seismic data volumes using the constructed probabilistic neural network.

    摘要翻译: 通过首先计算代表偏移地震数据量的多个初始AVO地震属性,将AVO异常分类为近偏移和远偏移地震数据量。 从计算的初始AVO地震属性构建概率神经网络。 在偏移地震数据量的一部分中计算AVO异常分类。 重复前述步骤,直到偏移地震数据量部分中计算的AVO异常分类令人满意。 使用构建的概率神经网络在整个偏移地震数据量中计算AVO异常分类。

    Method for time-aligning multiple offset seismic data volumes
    4.
    发明授权
    Method for time-aligning multiple offset seismic data volumes 有权
    时间对齐多个偏移地震数据量的方法

    公开(公告)号:US06757217B2

    公开(公告)日:2004-06-29

    申请号:US10230793

    申请日:2002-08-29

    IPC分类号: G01V136

    CPC分类号: G01V1/366 G01V2210/59

    摘要: Near-offset and far-offset seismic data volumes are time-aligned by first selecting a plurality of time shifts. The near-offset and far-offset seismic data volumes are cross-correlated at the plurality of time shifts. An initial time-shift volume and a maximum correlation volume are created from the maximal cross-correlations at the plurality of time shifts. Areas of high time shift from the initial time-shift volume and areas of low cross-correlation from the maximum correlation volume are determined. The determined areas of high time shift and low cross-correlation are filtered from the initial time-shift volume, generating a filtered time-shift volume. The filtered time-shift volume is applied to the far-offset seismic volume to generate a time-aligned far-offset volume.

    摘要翻译: 通过首先选择多个时移,近偏移和远偏移的地震数据量被时间对齐。 近偏移和远偏移的地震数据量在多个时移上是相互关联的。 从多个时移处的最大互相关产生初始时移量和最大相关体积。 确定从初始时移量和低互相关的区域从最大相关体积高时间偏移的区域。 从初始时移量中滤出确定的高时移和低互相关的区域,产生滤波后的时移量。 将经过滤波的时移量应用于远偏移地震体积以产生时间对准的远偏移量。

    Method for post processing compensation of amplitude for misaligned and misstacked offset seismic data
    5.
    发明授权
    Method for post processing compensation of amplitude for misaligned and misstacked offset seismic data 有权
    用于未对准和错堆叠偏移地震数据的后处理补偿幅度的方法

    公开(公告)号:US06757216B1

    公开(公告)日:2004-06-29

    申请号:US10438540

    申请日:2003-05-15

    IPC分类号: G01V136

    CPC分类号: G01V1/282

    摘要: A method for assessing the suitability of seismic data for quantitative amplitude analysis, where the concern is excessive residual normal moveout (RNMO). The invention uses a near offset stack and a far offset stack, the time difference between the two, a mute pattern, a reflection shape assumption for the RNMO, and a waveform and frequency for the far stack traces to generate a formula that estimates far stack amplitude error caused by RNMO. The formula can be used to compensate the far stack amplitude where the error is not so great as to require reprocessing of the data. The method can also be applied to interpreted amplitude maps.

    摘要翻译: 评估地震数据对定量振幅分析的适用性的方法,其中关注的是过度的残余正常移动(RNMO)。 本发明使用近偏移堆栈和远偏移堆栈,两者之间的时间差,静音模式,RNMO的反射形状假设以及远堆栈轨迹的波形和频率来生成估计远堆栈的公式 RNMO引起的振幅误差。 该公式可用于补偿远堆栈幅度,其中误差不太大,以至于需要对数据进行再处理。 该方法也可以应用于解释幅度图。

    Method of calculating a throw volume for quantitative fault analysis
    6.
    发明授权
    Method of calculating a throw volume for quantitative fault analysis 有权
    计算定量故障分析投掷量的方法

    公开(公告)号:US06791900B2

    公开(公告)日:2004-09-14

    申请号:US10430173

    申请日:2003-05-06

    IPC分类号: G01V136

    CPC分类号: G01V1/30

    摘要: A method of calculating a throw volume corresponding to a seismic data volume. A range of time shifts and a search direction for the seismic data volume are selected. A data location separation and a vertical time window are also selected. A cross-correlation is calculated between data values corresponding to first and second data locations separated by the data location separation and symmetrically located in the search direction on each side of a target data location. The cross-correlation is calculated throughout the vertical time window for each time shift in the range of time shifts. The time shift corresponding to the maximum calculated cross-correlation is stored in the throw volume.

    摘要翻译: 一种计算对应于地震数据量的投掷量的方法。 选择地震数据量的时间范围和搜索方向。 还选择数据位置分离和垂直时间窗口。 在对应于由数据位置分隔分隔的第一和第二数据位置的数据值之间计算互相关,并且在目标数据位置的每一侧对称地位于搜索方向。 在时间范围内的每个时间偏移的整个垂直时间窗口中计算互相关。 对应于最大计算的互相关的时移被存储在投掷量中。

    Method for seismic facies interpretation using textural analysis and neural networks
    9.
    发明授权
    Method for seismic facies interpretation using textural analysis and neural networks 有权
    使用纹理分析和神经网络进行地震相解释的方法

    公开(公告)号:US06438493B1

    公开(公告)日:2002-08-20

    申请号:US09948070

    申请日:2001-09-06

    IPC分类号: G06F1900

    CPC分类号: G01V1/32 G01V2210/48

    摘要: Seismic facies are identified in a volume of seismic data, wherein, first, a plurality of initial textural attributes representative of the volume of seismic data are calculated. Next, a probabilistic neural network is constructed from the calculated initial textural attributes. Then, final textural attributes are calculated throughout the volume of seismic data. Finally, the calculated final textural attributes are classified using the constructed probabilistic neural network.

    摘要翻译: 在地震数据的体积中识别地震相,其中首先,计算表示地震数据体积的多个初始结构属性。 接下来,从计算的初始纹理属性构建概率神经网络。 然后,在整个地震数据量中计算最终的纹理属性。 最后,使用构建的概率神经网络对所计算的最终纹理属性进行分类。

    Retrodicting Source-Rock Quality And Paleoenvironmental Conditions
    10.
    发明申请
    Retrodicting Source-Rock Quality And Paleoenvironmental Conditions 有权
    降低源岩质量和古环境条件

    公开(公告)号:US20100175886A1

    公开(公告)日:2010-07-15

    申请号:US12601895

    申请日:2008-06-09

    摘要: A method for retrodicting source-rock quality and/or paleoenvironmental conditions are disclosed. A first set of system variables associated with source-rock quality is selected (705). A second set of system variables directly or indirectly causally related to the first set of variables is also selected (710). Data for variables selected to be known quantities are estimated or obtained (720). A network with nodes including both sets of variables is formed (715). The network has directional links connecting interdependent nodes (715). The directional links preferably honor known causality relations. A Bayesian network algorithm is used with the data to solve the network for the unknown variables and their associated uncertainties (725). The variables selected to be unknowns can be input nodes (paleoenvironmental conditions), intermediate nodes, output nodes (source rock quality), or any combination thereof.

    摘要翻译: 公开了一种用于降低源岩质量和/或古环境条件的方法。 选择与源岩质量相关的第一组系统变量(705)。 还选择与第一组变量直接或间接因果关系的第二组系统变量(710)。 估计或获得被选择为已知量的变量的数据(720)。 形成具有包括两组变量的节点的网络(715)。 网络具有连接相互依赖节点的定向链路(715)。 指向性链接最好符合已知的因果关系。 贝叶斯网络算法与数据一起用于解决未知变量的网络及其相关不确定性(725)。 选择为未知数的变量可以是输入节点(古环境条件),中间节点,输出节点(源岩质量)或其任何组合。