摘要:
Disclosed is a continuous process for manufacturing aliphatic polycarbonate by polymerizing carbon dioxide and one or more epoxide compound in the presence of catalyst, in which carbon dioxide, one or more epoxide compound, and the catalyst are continuously supplied to polymerization reactor to produce aliphatic polycarbonate, separate unreacted carbon dioxide and epoxide compound and recycle them as raw materials.
摘要:
Disclosed is a continuous process for manufacturing aliphatic polycarbonate by polymerizing carbon dioxide and one or more epoxide compound in the presence of catalyst, in which carbon dioxide, one or more epoxide compound, and the catalyst are continuously supplied to polymerization reactor to produce aliphatic polycarbonate, separate unreacted carbon dioxide and epoxide compound and recycle them as raw materials.
摘要:
The present invention is an uncrosslinked linear medium-density polyethylene resin composition for a power cable, which is applicable to an insulating layer, a semi-conducting layer or a sheath layer. Specifically, the uncrosslinked polyethylene composition includes: 100 parts by weight of a polymer having a linear medium-density polyethylene resin having an α-olefin having 4 or more carbon atoms as a comonomer and having a melt index of 0.6-2.2 g/10 min (at 190° C. under a load of 5 kg), a differential scanning calorimetry (DSC) enthalpy of 130-190 joule/g and a molecular weight distribution of 2-30; and 0.1 to 10 parts by weight of one or more additive(s) selected from a flame retardant, an oxidation stabilizer, a UV stabilizer, a heat stabilizer and a process aid.
摘要:
Disclosed is uncrosslinked linear medium-density polyethylene resin composition for a power cable, which is applicable to an insulating layer, a semi-conducting layer or a sheath layer. Specifically, the uncrosslinked polyethylene composition includes: 100 parts by weight of a polymer comprising a linear medium-density polyethylene resin comprising an α-olefin having 4 or more carbon atoms as a comonomer and having a melt index of 0.6-2.2 g/10 min (at 190° C. under a load of 5 kg), a differential scanning calorimetry (DSC) enthalpy of 130-190 joule/g and a molecular weight distribution of 2-30; and 0.1 to 10 parts by weight of one or more additive(s) selected from a flame retardant, an oxidation stabilizer, a UV stabilizer, a heat stabilizer and a process aid.