摘要:
An omni-directional digital image capturing and processing system for use in a POS environment, comprising a system housing having an imaging window, and a plurality of coplanar illumination and imaging stations, disposed in the system housing, for generating and projecting a complex of coplanar illumination and imaging planes through said imaging window. At least one area-type illumination and imaging station is also disposed in the system housing, for generating and projecting an area-type illumination and imaging zone through the imaging window, which intersects with the complex of coplanar illumination and imaging planes within a 3D imaging volume definable relative to the imaging window, for omni-directional digital imaging of objects passing through the 3D imaging volume. Digital linear images of the object are generated when the object intersects with coplanar illumination and imaging planes, and digital area-type images of the object are generated when the object intersects with the area-type illumination and imaging zone, within the 3D imaging volume during system operation. The system also includes an object motion detection subsystem for automatically detecting the motion of objects passing through the 3D imaging volume, and generating motion data representative of the detected object motion within the 3D imaging volume.
摘要:
A digital image capturing and processing system comprising a system housing having an imaging window, a plurality of coplanar illumination and imaging subsystems disposed in the system housing. Each coplanar illuminating and linear imaging station includes a dual-type coplanar linear illumination and imaging engine that supports automatic image formation and detection along each pair of coplanar illumination and imaging planes generated by the coplanar illuminating and linear imaging station. Each pair of coplanar illumination and imaging planes are projected into the 3D imaging volume, for capturing of linear digital images of objects moved therewithin, and subsequent processing thereof for recognizing information graphically represented in the captured linear digital images, and automatic imaging-processing based object motion and velocity detection within the 3D imaging volume.
摘要:
Digital image capturing and processing system comprising a digital image capturing and processing module, and an integrated electronic weigh scale module having a load cell that is centrally located with respect to the digital image capturing and processing module. The digital image capturing and processing module electrically interfaces with the electronic weigh scale module by way of touch-fit electrical inter-connectors that automatically establish all electrical interconnections between the two modules when the digital image capturing and processing module is placed onto the electronic weigh scale module, and the electronic load cell bears the weight of the digital image capturing and processing module.
摘要:
A method for intelligently controlling the illumination and imaging of objects while being moved through a 3D imaging volume. As an object is being moved within the 3D imaging volume of a digital image capturing and processing system projecting a plurality of field of views (FOVs) through the 3D imaging volume, and prior to illumination and imaging. A projected trajectory is determined for the object through the 3D imaging volume. The FOVs which intersect with the projected trajectory of the object, passing through said 3D imaging volume, are determined. Only the determined FOVs are selectively illuminated as the object is moved along its projected trajectory through the FOVs, while digital linear images of the object are formed and detected, for storage and subsequent processing of information graphically represented in the digital linear images.
摘要:
A digital image capturing and processing system comprising a plurality of coplanar illumination and imaging stations for producing a plurality of coplanar linear illumination and imaging planes which intersect within a 3D imaging volume defined relative to an imaging window. Each station includes an array of planar illumination modules (PLIMs) for producing at least one substantially planar illumination beam (PLIB), and a linear image detection array having a field of view (FOV) on the linear image detection array and extending in substantially the same plane as the PLIB, to provide a coplanar illumination and imaging plane (PLIB/FOV). The PLIB/FOV is projected through the 3D imaging volume, for capturing linear (1D) digital images of an object passing therethrough, for subsequent processing and recognition of information graphically represented in the linear digital images. Each station also employs a local control subsystem for controlling at least one illumination parameter associated with the production of the PLIB, in response to the motion and velocity of objects detected within the 3D imaging volume during system operation. By virtue of the present invention, it is possible to optimally illuminate objects based on the velocity at which such objects pass through the 3D imaging volume, at point-of-sale (POS) stations and like retail environments. Such illumination control ensures the capture of high quality digital images of objects, resulting in improved image processing.
摘要:
An automatic omni-directional bar code symbol reading system for use in a POS environment. The system comprises a system housing having a horizontal housing section with a first light transmission window, and a vertical housing section with a second light transmission window. A plurality of linear-type bar code symbol reading stations are disposed in the horizontal housing section, for generating and projecting a complex of linear illumination planes through the first light transmission window and into a 3D volume definable relative to the system housing. At least one area-type bar code reading station is disposed in the vertical housing section, for generating and projecting an area illumination beam through the imaging window, and into the 3D volume. The complex of linear illumination planes and the area illumination beam enable the omni-directional reading of bar code symbols on an object passing through the 3D volume, and generation of symbol character data representative of the read bar code symbol. An object detection subsystem automatically detects the object passing through the 3D volume, and generates motion data representative of the detected object motion within the 3D volume. A control subsystem controls operations within the linear-type and area-type bar code symbol reading stations using control data derived from the motion data generated by the object motion detection subsystem.
摘要:
An omni-directional digital image capturing and processing system for use in a POS environment, comprising a system housing having a horizontal housing section and a vertical housing section. The horizontal housing section has a horizontal imaging window, and contains a first plurality of coplanar illumination and imaging stations, for generating and projecting a first group of coplanar illumination and imaging planes through the horizontal imaging window. The vertical housing section has a vertical imaging window, and contains a second plurality of coplanar illumination and imaging stations for generating and projecting second group of coplanar illumination and imaging planes through the vertical imaging window, which intersect and cooperate with the first complex of coplanar illumination and imaging planes within a 3D imaging volume definable relative to the horizontal and vertical imaging windows. This generates a complex of coplanar illumination and imaging planes within the 3D imaging volume, capable of omni-directional imaging of objects passing through the 3D imaging volume. Digital linear images of the object are generated as the object intersects coplanar illumination and imaging planes within the 3D imaging volume during system operation. The system also includes an object motion detection subsystem for automatically detecting the motion of objects passing through the 3D imaging volume, and generating motion data representative of the detected object motion within the 3D imaging volume.
摘要:
Digital image capturing and processing network for use in a retail POS environment, comprising a plurality of digital image capturing systems, and a remote image processing server. Each digital image capturing system is installed at a POS station and includes a system housing having an imaging window and containing a plurality of coplanar illumination and imaging stations, for generating and projecting a complex of coplanar illumination and imaging planes through the imaging window, and into a 3D imaging volume definable relative to the imaging window, and producing digital images of objects passed through the 3D imaging volume. The remote image processing server is arranged in two-way data communication with each digital image capturing system, for (i) receiving and processing digital images produced by each digital image capturing system, (iI) performing at least one information abstraction process on the digital images, and (iIi) transmitting information back to the POS station regarding said information abstraction process.
摘要:
An automatic digital image capturing and processing system for use in a POS environment, comprising a system housing having vertical housing section provided with an imaging window, and containing at least two area-type illumination and imaging stations for generating and projecting area-type illumination and imaging zones through the imaging window, so that the area-type illumination and imaging zones intersect within a 3D imaging volume definable relative to the imaging window. An object motion detection subsystem automatically detects the motion of objects passing through the 3D imaging volume, and generates motion data representative of detected object motion within the 3D imaging volume. And a control subsystem, responsive to the object motion detection subsystem, automatically controls operations within the area-type illumination and imaging stations during system operation. The area-type illumination and imaging zones intersect within the 3D imaging volume, and support automated illumination and imaging of objects passing therethrough, so that digital area-type images of the objects are automatically generated as objects pass through the area-type illumination and imaging zones within the 3D imaging volume during system operation.
摘要:
A digital image capturing and processing system for installation at a retail POS environment comprising a system housing having an imaging window; and a plurality of coplanar illumination and imaging subsystems for projecting a plurality of coplanar illumination and imaging planes through a 3D imaging volume defined relative to the imaging window, for digital imaging of objects passing through the 3D imaging volume. A globally-deployed object motion detection subsystem automatically detects and analyzes the motion of an object passing through at least a portion of the 3D imaging volume, and generates object motion data in response thereto. Object motion data, including object velocity data, is used to generate control data for controlling the operation of the coplanar illumination and imaging subsystems.