Abstract:
A capacitive micromachined ultrasonic transducer includes a first insulating film and a second insulating film disposed with a gap therebetween, a first electrode and a second electrode disposed on outer surfaces of the first and second insulating films, respectively, with the gap therebetween, at least one cell having an electrostatic capacitance between the first and second electrodes that varies with a variation of a thickness of the gap caused by displacement of the second insulating film and the second electrode, and a voltage applying unit configured to apply a voltage to between the first electrode and the second electrode. An electric field strength applied to the first insulating film is closer to an electric field strength that causes dielectric breakdown than an electric field strength applied to the second insulating film.
Abstract:
A drive method for an electrostatic capacitance type transducer is provided. The electrostatic capacitance type transducer includes a plurality of elements, the element including one or more cells, the cell having a first electrode and a second electrode separated from the first electrode by a gap, the first electrode or the second electrode in the plurality of elements being applied with an alternating current voltage. The plurality of elements includes a first element and a second element. A waveform of an alternating current voltage applied to the first element is set the similar as a waveform of an alternating current voltage applied to the second element. A phase difference between the alternating current voltage applied to the first element and the alternating current voltage applied to the second element is set equal to approximately 90 degrees.
Abstract:
A transducer includes at least one element including a plurality of cells. Each of the cells includes a pair of electrodes disposed with a gap therebetween and a vibrating membrane including one of the electrodes, and the vibrating membrane is vibratably supported. First and second cells of the plurality of cells in the element have the gaps that communicate with each other, and the first cell and a third cell in the element have the gaps that do not communicate with each other.
Abstract:
A capacitive micromachined ultrasonic transducer includes a first insulating film and a second insulating film disposed with a gap therebetween, a first electrode and a second electrode disposed on outer surfaces of the first and second insulating films, respectively, with the gap therebetween, at least one cell having an electrostatic capacitance between the first and second electrodes that varies with a variation of a thickness of the gap caused by displacement of the second insulating film and the second electrode, and a voltage applying unit configured to apply a voltage to between the first electrode and the second electrode. An electric field strength applied to the first insulating film is closer to an electric field strength that causes dielectric breakdown than an electric field strength applied to the second insulating film.
Abstract:
A drive method for an electrostatic capacitance type transducer is provided. The electrostatic capacitance type transducer includes a plurality of elements, the element including one or more cells, the cell having a first electrode and a second electrode separated from the first electrode by a gap, the first electrode or the second electrode in the plurality of elements being applied with an alternating current voltage. The plurality of elements includes a first element and a second element. A waveform of an alternating current voltage applied to the first element is set the similar as a waveform of an alternating current voltage applied to the second element. A phase difference between the alternating current voltage applied to the first element and the alternating current voltage applied to the second element is set equal to approximately 90 degrees.
Abstract:
Provided are a method, a device and the like for driving a capacitance transducer that enable reduction of transmission sound pressure variation caused by variation in characteristics of a capacitance transducer used for, e.g., an ultrasound conversion element. A method for driving a capacitance transducer including a plurality of elements each including cells each having a structure in which a vibration membrane including one electrode of a pair of electrodes formed with a cavity therebetween is supported in such a manner that the vibration membrane can vibrate is provided.
Abstract:
A transducer includes at least one element including a plurality of cells. Each of the cells includes a pair of electrodes disposed with a gap therebetween and a vibrating membrane including one of the electrodes, and the vibrating membrane is vibratably supported. First and second cells of the plurality of cells in the element have the gaps that communicate with each other, and the first cell and a third cell in the element have the gaps that do not communicate with each other.
Abstract:
Provided are a method, a device and the like for driving a capacitance transducer that enable reduction of transmission sound pressure variation caused by variation in characteristics of a capacitance transducer used for, e.g., an ultrasound conversion element. A method for driving a capacitance transducer including a plurality of elements each including cells each having a structure in which a vibration membrane including one electrode of a pair of electrodes formed with a cavity therebetween is supported in such a manner that the vibration membrane can vibrate is provided.