Abstract:
The present invention employs an actuator including: a movable portion connected to a reflecting member having a reflective surface; a movable comb electrode disposed at a distance from the reflecting member, supported by the movable portion, and extended in a direction parallel to the reflective surface; a stationary comb electrode supported by a supporting portion, extends in the direction parallel to the reflective surface, and disposed alternately with the movable comb electrode; and a voltage controller that applies a voltage to the movable comb electrode and the stationary comb electrode to displace the movable comb electrode and the movable portion in a direction normal to the reflective surface. A portion that supports the movable comb electrode and a portion that supports the stationary comb electrode are disposed such that the movable comb electrode and the stationary comb electrode pass each other.
Abstract:
The present invention employs an actuator including: a movable portion connected to a reflecting member having a reflective surface; a movable comb electrode disposed at a distance from the reflecting member, supported by the movable portion, and extended in a direction parallel to the reflective surface; a stationary comb electrode supported by a supporting portion, extends in the direction parallel to the reflective surface, and disposed alternately with the movable comb electrode; and a voltage controller that applies a voltage to the movable comb electrode and the stationary comb electrode to displace the movable comb electrode and the movable portion in a direction normal to the reflective surface. A portion that supports the movable comb electrode and a portion that supports the stationary comb electrode are disposed such that the movable comb electrode and the stationary comb electrode pass each other.
Abstract:
Provided is an actuator including a substrate, a movable portion provided so as to be movable with respect to the substrate, at least three elastic bodies for supporting the movable portion to the substrate in a displaceable manner, a movable comb electrode supported by the movable portion and extending in a direction parallel to a surface of the substrate, and a fixed comb electrode supported by the substrate and extending in the direction parallel to the surface of the substrate in which the movable comb electrode and the fixed comb electrode are arranged so as to be alternately engaged with each other with a distance, and each of all of the elastic bodies has a long axis that forms an angle of more than 90° and 180° or less with respect to at least one of the other elastic bodies.
Abstract:
The present invention employs an actuator including: a movable portion connected to a reflecting member having a reflective surface; a movable comb electrode disposed at a distance from the reflecting member, supported by the movable portion, and extended in a direction parallel to the reflective surface; a stationary comb electrode supported by a supporting portion, extends in the direction parallel to the reflective surface, and disposed alternately with the movable comb electrode; and a voltage controller that applies a voltage to the movable comb electrode and the stationary comb electrode to displace the movable comb electrode and the movable portion in a direction normal to the reflective surface. A portion that supports the movable comb electrode and a portion that supports the stationary comb electrode are disposed such that the movable comb electrode and the stationary comb electrode pass each other.
Abstract:
A capacitive force sensor 101 of the present invention includes a plurality of cells each including a lower electrode 104, a movable member that includes an upper electrode 107 and has flexibility, and a support 105b arranged to movably support the movable member and to form a gap 106 between the upper and the lower electrodes. The plural cells are grouped into elements each including one or more of the cells, and the one or more cells in a same element are electrically connected to each other.
Abstract:
An ophthalmologic apparatus includes an aberration measuring unit configured to measure wavefront aberration of returning light, and a reflective optical modulation device configured to modulate the returning light. A control unit controls the reflective optical modulation device to correct the wavefront aberration of the returning light based on a measurement result of the aberration measuring unit. The reflective optical modulation device includes a reflection mirror of which the diameter of an effective region (effective diameter) that reflects the measurement light or the returning beam is 7.5 mm or less, and 61 or more actuators that act on the reflection mirror within the effective diameter. Each of the actuators includes an interdigital electrode having a maximum displacement of 7.5 μm or more.
Abstract:
In the method of manufacturing a micro structure including a membrane in a first substrate, a movable portion, a movable comb electrode, a suppressing unit, a support portion, and a fixed comb electrode are formed, and the movable portion of the first substrate and a second substrate are bonded. Then, the bonded second substrate is processed to form a membrane such as a reflecting portion. The movable comb electrode is supported by the movable portion and extends in a direction parallel to the membrane surface. The suppressing unit suppresses displacement of the movable comb electrode and the movable portion in a direction other than a direction normal to the membrane surface. The fixed comb electrode is supported by the support portion and extends in the direction parallel to the membrane surface. The fixed comb electrode is alternately arranged with respect to the movable comb electrode with a gap therebetween.
Abstract:
An ophthalmologic apparatus includes an aberration measuring unit configured to measure wavefront aberration of returning light, and a reflective optical modulation device configured to modulate the returning light. A control unit controls the reflective optical modulation device to correct the wavefront aberration of the returning light based on a measurement result of the aberration measuring unit. The reflective optical modulation device includes a reflection mirror of which the diameter of an effective region (effective diameter) that reflects the measurement light or the returning beam is 7.5 mm or less, and 61 or more actuators that act on the reflection mirror within the effective diameter. Each of the actuators includes an interdigital electrode having a maximum displacement of 7.5 μm or more.
Abstract:
A deformable mirror includes a mirror substrate having a continuous reflective surface and a plurality of actuators connected to the mirror substrate at a plurality of coupling portions. In the deformable mirror, the mirror substrate has first regions and a second region thicker than the first regions and the first regions are formed around the coupling portions.
Abstract:
A deformable mirror includes a mirror substrate having a continuous reflective surface and a plurality of actuators connected to the mirror substrate at a plurality of coupling portions. In the deformable mirror, the mirror substrate has first regions and a second region thicker than the first regions and the first regions are formed around the coupling portions.