Abstract:
An element substrate comprises a plurality of stages of shift registers that inputs and holds a serial data signal; a latch circuit that latches the serial data held by the shift registers; a decoder circuit that inputs an output of the latch circuit and outputs a selection signal for selecting a block of the print elements or the memory elements; and a mask circuit that masks the output of the selection signal for selecting the block of the memory elements from the decoder circuit in accordance with an input bit data signal. The block of the print elements or the memory elements includes a plurality of print elements or memory elements in which one element is selected in each of the plurality of groups.
Abstract:
A substrate includes a plurality of memory units each including an anti-fuse element and a switching element configured to switch application of a predetermined voltage to the anti-fuse element, a wiring to which the plurality of memory units are connected, a first electrode pad to which a voltage for supplying the predetermined voltage to the wiring is applied, and a second electrode pad to which a voltage for supplying the predetermined voltage to the wiring is applied.
Abstract:
An element array comprises a plurality of elements having a first electrode and a second electrode with a gap therebetween; the first electrode is separated for each of the elements by grooves, an insulating connection substrate is bonded to the first electrode, and wirings are provided from the respective first electrodes through the connection substrate to the side opposite to the first electrodes.
Abstract:
An element substrate including a liquid discharge element, comprising a memory element capable of storing individual information of the element substrate by a write, the memory element being configured to change an impedance value by the write, a plurality of current supply elements capable of supplying a current to the memory element, and a determination unit configured to determine presence/absence of the write based on a voltage generated in the memory element by the current selectively supplied from the plurality of current supply elements, wherein the plurality of current supply elements constitute a part of a current mirror circuit and each supply the current in an amount according to a size ratio to the memory element.
Abstract:
A capacitive force sensor 101 of the present invention includes a plurality of cells each including a lower electrode 104, a movable member that includes an upper electrode 107 and has flexibility, and a support 105b arranged to movably support the movable member and to form a gap 106 between the upper and the lower electrodes. The plural cells are grouped into elements each including one or more of the cells, and the one or more cells in a same element are electrically connected to each other.
Abstract:
An element array comprises a plurality of elements having a first electrode and a second electrode with a gap therebetween; the first electrode is separated for each of the elements by grooves, an insulating connection substrate is bonded to the first electrode, and wirings are provided from the respective first electrodes through the connection substrate to the side opposite to the first electrodes.
Abstract:
According to the present invention, it is possible to provide an element substrate and a print head with which a decrease in yield and an increase in cost in a manufacturing process can be suppressed. For that purpose, a VH wiring line and a GNDH wiring line are provided in parallel in the same layer.
Abstract:
A switch is configured to switch connection between a second terminal to which a data signal is input and a memory control signal of a memory element in accordance with a switching signal included in a data signal. In write to a memory element, the switching signal switches such that the switch connects the second terminal and the memory control signal of the memory element, and a pulse signal for the write to the memory element is input via the second terminal.
Abstract:
An element substrate comprises a plurality of stages of shift registers that inputs and holds a serial data signal; a latch circuit that latches the serial data held by the shift registers; a decoder circuit that inputs an output of the latch circuit and outputs a selection signal for selecting a block of the print elements or the memory elements; and a mask circuit that masks the output of the selection signal for selecting the block of the memory elements from the decoder circuit in accordance with an input bit data signal. The block of the print elements or the memory elements includes a plurality of print elements or memory elements in which one element is selected in each of the plurality of groups.
Abstract:
An element substrate including a liquid discharge element, comprising a memory element capable of storing individual information of the element substrate by a write, the memory element being configured to change an impedance value by the write, a plurality of current supply elements capable of supplying a current to the memory element, and a determination unit configured to determine presence/absence of the write based on a voltage generated in the memory element by the current selectively supplied from the plurality of current supply elements, wherein the plurality of current supply elements constitute a part of a current mirror circuit and each supply the current in an amount according to a size ratio to the memory element.