Abstract:
A four-phase switched reluctance motor torque ripple three-level suppression method. A first set of torque thresholds is set in rotor position interval [0°, θr/4]. A second set of torque thresholds is set in rotor position interval [θr/4, θr/2]. Power is supplied to adjacent phase A and phase B for excitation. The power supplied for excitation to phase A leads the power supplied for excitation to phase B by θr/4. An entire commutation process from phase A to phase B is divided into two intervals. In rotor position interval [0°, θ1], phase A uses the second set of torque thresholds while phase B uses the first set of torque thresholds. Critical position θ1 automatically appears in the commutation process, thus obviating the need for additional calculations. Total torque is controlled between [Te+th2low and Te+th2up]. In rotor position interval [θ1, θr/4], phase A continues to use the second set of torque thresholds, phase B continues to use the first set of torque thresholds, and the total torque is controlled between [Te+th1low and Te+th1up]. This suppresses torque ripples of a four-phase switched reluctance motor and provides great engineering application values.
Abstract:
A four-phase switched reluctance motor torque ripple two-level suppression method in which power is supplied to adjacent phase A and phase B for excitation. The power supplied for excitation to phase A leads the power supplied for excitation to phase B by θr/4. An entire commutation process from phase A to phase B is divided into two intervals, phase A which uses the second set of torque thresholds while phase B uses the first set of torque thresholds. Critical position θ1 automatically appears in the commutation process, thus obviating the need for additional calculations. Total torque is controlled between [Te+th2low and Te+th2up]. In rotor position interval [θ1, θr/4], phase A continues to use the second set of torque thresholds, phase B continues to use the first set of torque thresholds, and the total torque is controlled between [Te+th1low and Te+th1up].
Abstract:
A four-phase switched reluctance motor torque ripple two-level suppression method. A first set of torque thresholds is set in rotor position interval [0°, θr/4]. A second set of torque thresholds is set in rotor position interval [θr/4, θr/2]. Power is supplied to adjacent phase A and phase B for excitation. The power supplied for excitation to phase A leads the power supplied for excitation to phase B by θr/4. An entire commutation process from phase A to phase B is divided into two intervals. In rotor position interval [0°, θ1], phase A uses the second set of torque thresholds while phase B uses the first set of torque thresholds. Critical position θ1 automatically appears in the commutation process, thus obviating the need for additional calculations. Total torque is controlled between [Te+th2low and Te+th2up]. In rotor position interval [θ1, θr/4], phase A continues to use the second set of torque thresholds, phase B continues to use the first set of torque thresholds, and the total torque is controlled between [Te+th1low and Te+th1up]. This suppresses torque ripples of a four-phase switched reluctance motor and provides great engineering application values.
Abstract:
A position sensorless step-wise freewheeling control method for a switched reluctance motor having dual switched-mode power converters for each phase doesn't require any additional external hardware, any rotor-position sensor, or storage of flux linkage data of the motor. After the upper and lower tubes of the main switch are switched off, and the phase of the switched reluctance motor enters into a negative voltage forced freewheeling state, the phase current is detected. When the phase current falls to a preset threshold, one of the upper or lower tubes is switched on and the phase enters into a zero voltage natural freewheeling state. When the phase current reaches a peak value, the rotor position becomes the start position of the minimum phase inductance and the rotor position is used as the switch-on position of the main switch. The upper and lower tubes are then switched on.
Abstract:
A position sensorless step-wise freewheeling control method for a switched reluctance motor having dual switched-mode power converters for each phase doesn't require any additional external hardware, any rotor-position sensor, or storage of flux linkage data of the motor. After the upper and lower tubes of the main switch are switched off, and the phase of the switched reluctance motor enters into a negative voltage forced freewheeling state, the phase current is detected. When the phase current falls to a preset threshold, one of the upper or lower tubes is switched on and the phase enters into a zero voltage natural freewheeling state. When the phase current reaches a peak value, the rotor position becomes the start position of the minimum phase inductance and the rotor position is used as the switch-on position of the main switch. The upper and lower tubes are then switched on.