Abstract:
In one embodiment, a rendezvous request message is generated (e.g., by a sender) that specifies a channel C and a rendezvous time T for which a distributed message is to be transmitted in a frequency-hopping computer network. The rendezvous request message is then transmitted on one or more channels used in the computer network based on reaching a plurality of intended recipients of the distributed message with the rendezvous request message prior to rendezvous time T. Accordingly, the distributed message is then transmitted on channel C at rendezvous time T. In another embodiment, a device receives a rendezvous request message, and in response to determining to honor the rendezvous request message, listens for the distributed message on channel C at rendezvous time T.
Abstract:
In one embodiment, a battery-operated communication device “quick-samples” a frequency hopping sequence at a periodic rate corresponding to a substantially low duty cycle, and is discovered by (e.g., attached to) a main-powered communication device. During a scheduled sample, the main-powered communication device transmits a control packet to be received by the battery-operated communication device, the control packet containing timing information and transmitted to account for worst-case clock drift error between the two devices. The battery-operated communication device responds to the control packet with a link-layer acknowledgment containing timing information from the battery-operated communication device. Accordingly, the two devices may re-synchronize their timing based on the timing information in the control packet and acknowledgment, respectively.
Abstract:
In one embodiment, a rendezvous request message is generated (e.g., by a sender) that specifies a channel C and a rendezvous time T for which a distributed message is to be transmitted in a frequency-hopping computer network. The rendezvous request message is then transmitted on one or more channels used in the computer network based on reaching a plurality of intended recipients of the distributed message with the rendezvous request message prior to rendezvous time T. Accordingly, the distributed message is then transmitted on channel C at rendezvous time T. In another embodiment, a device receives a rendezvous request message, and in response to determining to honor the rendezvous request message, listens for the distributed message on channel C at rendezvous time T.
Abstract:
In one embodiment, each of a plurality of devices in a computer network is configured to i) transmit a unicasted dynamic host configuration protocol (DHCP) solicit message to a neighbor device having a route to a border router as an assumed DHCP relay without regard to location of a DHCP server, and ii) operate as a DHCP relay to receive unicasted DHCP solicit messages and relay the solicit message to the border router of the network without regard to location of the DHCP server, and to relay a DHCP reply to a corresponding requestor device.
Abstract:
In one embodiment, each of a plurality of devices in a computer network is configured to i) transmit a unicasted dynamic host configuration protocol (DHCP) solicit message to a neighbor device having a route to a border router as an assumed DHCP relay without regard to location of a DHCP server, and ii) operate as a DHCP relay to receive unicasted DHCP solicit messages and relay the solicit message to the border router of the network without regard to location of the DHCP server, and to relay a DHCP reply to a corresponding requestor device.
Abstract:
In one embodiment, a battery-operated communication device “quick-samples” a frequency hopping sequence at a periodic rate corresponding to a substantially low duty cycle, and is discovered by (e.g., attached to) a main-powered communication device. During a scheduled sample, the main-powered communication device transmits a control packet to be received by the battery-operated communication device, the control packet containing timing information and transmitted to account for worst-case clock drift error between the two devices. The battery-operated communication device responds to the control packet with a link-layer acknowledgment containing timing information from the battery-operated communication device. Accordingly, the two devices may re-synchronize their timing based on the timing information in the control packet and acknowledgment, respectively.