OPTIMIZED HADOOP TASK SCHEDULER IN AN OPTIMALLY PLACED VIRTUALIZED HADOOP CLUSTER USING NETWORK COST OPTIMIZATIONS
    2.
    发明申请
    OPTIMIZED HADOOP TASK SCHEDULER IN AN OPTIMALLY PLACED VIRTUALIZED HADOOP CLUSTER USING NETWORK COST OPTIMIZATIONS 审中-公开
    优化的HADOOP任务调度器在使用网络成本优化的最佳配置虚拟化HADOOP集群中

    公开(公告)号:US20160350146A1

    公开(公告)日:2016-12-01

    申请号:US14726336

    申请日:2015-05-29

    Abstract: The present disclosure describes, among other things, a method for optimizing task scheduling in an optimally placed virtualized cluster using network cost optimizations. The method comprises computing a first network cost matrix for a plurality of available physical nodes, determining a first solution to a first optimization problem of virtual machine placement onto the plurality of available physical nodes based on the first network cost matrix, wherein the first solution comprises one or more optimally placed virtual machines, computing a second network cost matrix for allocating one or more tasks to one or more possible optimally placed virtual machines of the first solution, and determining a second solution to a second optimization problem of task allocation onto one or more possible optimally placed virtual machines of the first solution based on the second network cost matrix.

    Abstract translation: 本公开尤其描述了一种使用网络成本优化在优化的虚拟化集群中优化任务调度的方法。 该方法包括计算多个可用物理节点的第一网络成本矩阵,基于第一网络成本矩阵来确定虚拟机放置到多个可用物理节点上的第一优化问题的第一解决方案,其中第一解决方案包括 一个或多个优化放置的虚拟机,计算用于将一个或多个任务分配给所述第一解决方案的一个或多个可能的最佳放置的虚拟机的第二网络成本矩阵,以及确定任务分配到一个或多个任务上的第二优化问题的第二解决方案 基于第二网络成本矩阵的第一解决方案的更可能的最佳放置的虚拟机。

    OPTIMIZING PLACEMENT OF VIRTUAL MACHINES
    3.
    发明申请
    OPTIMIZING PLACEMENT OF VIRTUAL MACHINES 有权
    优化虚拟机配置

    公开(公告)号:US20150127834A1

    公开(公告)日:2015-05-07

    申请号:US14242131

    申请日:2014-04-01

    CPC classification number: H04L47/78 G06F9/5044

    Abstract: Systems and methods are described for allocating resources in a cloud computing environment. The method includes receiving a computing request, the request for use of at least one virtual machine and a portion of memory. In response to the request, a plurality of hosts is identified and a cost function is formulated using at least a portion of those hosts. Based on the cost function, at least one host that is capable of hosting the virtual machine and memory is selected.

    Abstract translation: 描述了在云计算环境中分配资源的系统和方法。 该方法包括接收计算请求,使用至少一个虚拟机的请求和一部分存储器。 响应于该请求,识别多个主机,并且使用这些主机的至少一部分来表示成本函数。 基于成本函数,选择能够托管虚拟机和存储器的至少一个主机。

    OPTIMIZING PLACEMENT OF VIRTUAL MACHINES
    5.
    发明申请

    公开(公告)号:US20170346759A1

    公开(公告)日:2017-11-30

    申请号:US15682091

    申请日:2017-08-21

    Abstract: Systems and methods are described for allocating resources in a cloud computing environment. The method includes receiving a computing request, the request for use of at least one virtual machine and a portion of memory. In response to the request, a plurality of hosts is identified and a cost function is formulated using at least a portion of those hosts. Based on the cost function, at least one host that is capable of hosting the virtual machine and memory is selected.

    Optimized assignments and/or generation virtual machine for reducer tasks
    6.
    发明授权
    Optimized assignments and/or generation virtual machine for reducer tasks 有权
    针对减速机任务优化分配和/或生成虚拟机

    公开(公告)号:US09367344B2

    公开(公告)日:2016-06-14

    申请号:US14509691

    申请日:2014-10-08

    CPC classification number: G06F9/45558 G06F9/5066 G06F2009/45562 H04L47/78

    Abstract: The present disclosure relates to assignment or generation of reducer virtual machines after the “map” phase is substantially complete in MapReduce. Instead of a priori placement, distribution of keys after the “map” phase over the mapper virtual machines can be used to efficiently reducer tasks in virtualized cloud infrastructure like OpenStack. By solving a constraint optimization problem, reducer VMs can be optimally assigned to process keys subject to certain constraints. In particular, the present disclosure describes a special variable matrix. Furthermore, the present disclosure describes several possible cost matrices for representing the costs determined based on the key distribution over the mapper VMs (and other suitable factors).

    Abstract translation: 本公开涉及在MapReduce中的“映射”阶段基本完成之后分配或生成reducer虚拟机。 在映射器虚拟机上的“映射”阶段之后,可以使用OpenStack虚拟化云基础设施中的有效减少任务来代替先验位置分配密钥。 通过解决约束优化问题,可以将reducer VM最优化地分配给具有某些限制的处理密钥。 具体地,本公开描述了特殊变量矩阵。 此外,本公开描述了用于表示基于映射器VM上的密钥分布(和其他合适因素)确定的成本的几种可能的成本矩阵。

    OPTIMIZED ASSIGNMENTS AND/OR GENERATION VIRTUAL MACHINE FOR REDUCER TASKS
    7.
    发明申请
    OPTIMIZED ASSIGNMENTS AND/OR GENERATION VIRTUAL MACHINE FOR REDUCER TASKS 有权
    优化分配和/或生成用于减少任务的虚拟机

    公开(公告)号:US20160103695A1

    公开(公告)日:2016-04-14

    申请号:US14509691

    申请日:2014-10-08

    CPC classification number: G06F9/45558 G06F9/5066 G06F2009/45562 H04L47/78

    Abstract: The present disclosure relates to assignment or generation of reducer virtual machines after the “map” phase is substantially complete in MapReduce. Instead of a priori placement, distribution of keys after the “map” phase over the mapper virtual machines can be used to efficiently reducer tasks in virtualized cloud infrastructure like OpenStack. By solving a constraint optimization problem, reducer VMs can be optimally assigned to process keys subject to certain constraints. In particular, the present disclosure describes a special variable matrix. Furthermore, the present disclosure describes several possible cost matrices for representing the costs determined based on the key distribution over the mapper VMs (and other suitable factors).

    Abstract translation: 本公开涉及在MapReduce中的“映射”阶段基本完成之后分配或生成reducer虚拟机。 在映射器虚拟机上的“映射”阶段之后,可以使用OpenStack虚拟化云基础设施中的有效减少任务来代替先验位置分配密钥。 通过解决约束优化问题,可以将reducer VM最优化地分配给具有某些限制的处理密钥。 具体地,本公开描述了特殊变量矩阵。 此外,本公开描述了用于表示基于映射器VM上的密钥分布(和其他合适因素)确定的成本的几种可能的成本矩阵。

Patent Agency Ranking