Abstract:
A combustion system includes a fuel and oxidant source, a perforated flame holder, and a support structure that supports the perforated flame holder at a selected distance from the fuel and oxidant source. The fuel and oxidant source outputs fuel and oxidant onto the perforated flame holder. The perforated flame holder receives the fuel and oxidant and sustains a combustion reaction of the fuel and oxidant within the perforated flame holder.
Abstract:
Technologies are provided for an adaptor for introducing electricity into a combustion chamber, for the purpose of electrical flame or combustion control. The adaptor may be placed between a conventional burner assembly and a conventional combustion chamber wall. The adaptor includes an aperture for admitting electricity into the combustion chamber.
Abstract:
A combustion system includes a fuel and oxidant source, a perforated flame holder, and a support structure that supports the perforated flame holder at a selected distance from the fuel and oxidant source. The fuel and oxidant source outputs fuel and oxidant onto the perforated flame holder. The perforated flame holder receives the fuel and oxidant and sustains a combustion reaction of the fuel and oxidant within the perforated flame holder.
Abstract:
A furnace has a fuel and oxidant source to create a flow of combustible fuel and oxidant mixture, a perforated flame holder on which the flow impinges, and a support structure to support the perforated flame holder in a position where it at least partially contains combustion of the fuel and oxidant mixture. The support structure mechanically engages with the interior of the furnace to support the perforated flame holder, which may be movable within the furnace via a mechanism to optimize combustion or reduce NOx. The support may contain fluid coolant. The perforated flame holder may be moved into and out of a combustion region.