Abstract:
A supplemented nuclear fuel comprises a nuclear fuel of oxide type which generates fission products such as tellurium, cesium and iodine, which generate via chemical interaction species that are potentially corrosive, supplemented with at least one redox system comprising a first and second species comprising a common element having a different degree of oxidation in each of the two species, the system having an oxygen potential curve as a function of the temperature that is within an interval delimited by: an upper limit: the curve of coexistence of the chemical species I2Te (g) and CsI (g) at the same partial pressure imposed by the equilibrium between CsI (l) and CsI (g), approximated between 1000° C. and 2000° C. by a straight line segment whose ends PO2/11 and PO2/12 have the coordinates: PO2/11 (T=1000° C.)≈−370 kJ/molO2 and PO2/12 (T=2000° C.)≈−230 kJ/molO2; and a lower limit: the curve of oxygen potential of the system (Cs2MoO4/Cs+Mo) approximated between 1000° C. and 2000° C. by a straight line segment whose ends PO2/21 and PO2/22 have the coordinates: PO2/21 (T=1000° C.)≈−530 kJ/molO2 and PO2/22 (T=2000° C.)≈−390 kJ/molO2.
Abstract:
A device for granulating powders by cryogenic atomisation, characterised in that it comprises: a device for mixing powders by cryogenic fluid, comprising at least one chamber for mixing powders, comprising a cryogenic fluid; and a device for atomising a suspension of powders mixed by the device for mixing powders in order to allow a granulation of the powders, comprising a way of fractionating the suspension of powders making it possible to adjust the size of the droplets of powders to be atomised, and a method for adjusting the moisture of the mixed powders and/or the moisture of the atomisation atmosphere.