FRAME ASSEMBLIES FOR OPTICAL FIBER DISTRIBUTION ELEMENTS

    公开(公告)号:US20240377602A1

    公开(公告)日:2024-11-14

    申请号:US18754675

    申请日:2024-06-26

    Abstract: A telecommunications frame assembly includes a frame for housing a first set of fiber optic distribution devices in a vertically stacked arrangement on a right side of the frame and a second set of fiber optic distribution devices in a vertically stacked arrangement on a left side of the frame, wherein the frame defines top and bottom openings adjacent the outer edges of the frame at each of the right side and the left side for selectively leading cables to or from the fiber optic distribution devices to be mounted on the frame, the frame further defining a central vertical trough extending from a central top opening defined by the frame, wherein radius limiters are provided in vertically stacked arrangements at each of the right side and the left side of the frame for selectively guiding cabling between the first set and the second set of fiber optic distribution devices, wherein the radius limiters allow cabling to pass through the central trough between the right and left sides of the frame and/or into the central trough from either of the right and left sides of the frame for selective routing from or to the central top opening, the frame further defining a bottom trough that extends horizontally between the right and left sides of the frame, wherein each of the bottom openings adjacent the outer edges of the frame at the right and left sides communicate with the bottom trough and wherein the radius limiters at each of the right side and the left side of the frame also allow cabling to pass from the fiber optic distribution devices to the bottom trough.

    FRAME ASSEMBLIES FOR OPTICAL FIBER DISTRIBUTION ELEMENTS

    公开(公告)号:US20220252811A1

    公开(公告)日:2022-08-11

    申请号:US17425682

    申请日:2020-01-24

    Abstract: A method of mounting a telecommunications frame (114) to a floor surface includes fixing a floor mounting template (6000) to the floor surface, wherein the template (6000) defines a front end (6020) and a rear end (6022) and first and second sides (6006, 6008) extending therebetween, sliding the telecommunications frame (114) over the floor mounting template (6000) in a direction extending from the front end (6020) to the rear end (6022) of the template, wherein the template (6000) is positioned within a gap (5999) defined by spaced-apart walls (5997) of the telecommunications frame (114), and securing the first side (6006) of the floor mounting template (6000) to a first portion of the telecommunications frame (114) and securing the second side (6008) of the floor mounting template (6000) to a second portion of the telecommunications frame (114).

    MODULAR HYBRID CLOSURE
    5.
    发明申请

    公开(公告)号:US20200381910A1

    公开(公告)日:2020-12-03

    申请号:US16857994

    申请日:2020-04-24

    Abstract: A hybrid cable distribution system wherein a feeder cable is received by a box. The feeder cable can be a hybrid cable including optical fibers and copper wire (coax). The box may be used only for copper signal handling (such as coaxial signal handling), and then at a later date, the box may be used for receiving fiber signals. Customers can directly connect to the feeder fan out device by connecting a tail of a drop splice module that is spliced to an individual distribution cable to the feeder fan out device. This connection creates a point-to-point connection. The number of fan out devices in the system can be increased or decreased as needed. Alternatively, a splitter input can be connected to the feeder fan out device, such as through a pigtail extending from the splitter, wherein the splitter splits the signal as desired into a plurality of outputs. The outputs of the splitters can be in the form of connectors or adapters. The connectors or adapters are then connected to tails of drop splice modules that are spliced to individual distribution cables so that customers can receive a split signal. The cable distribution system allows for mixing of connection types to the customer(s) such as a direct connection (point-to-point), or a split signal connection. Further, the types of splitters can be mixed and varied as desired. Further, the types of fan out devices can be mixed and varied as desired.

    RUGGEDIZED FIBER OPTIC CONNECTORS AND CONNECTION SYSTEMS

    公开(公告)号:US20200225422A1

    公开(公告)日:2020-07-16

    申请号:US16828096

    申请日:2020-03-24

    Abstract: Example fiber optic connector systems have rugged, robust designs that are environmentally sealed and that are relatively easy to install and uninstall in the field. Some connector systems can be configured in the field to be compatible with different styles of fiber optic adapters. Some connectors include a first seal (90) on a release sleeve; and a second seal (88) between the release sleeve and a connector body. Other connectors include a seal (139) and a flexible latch (136) on a connector. Other connectors include a protective structure (228, 328, 428) that mounts over the fiber optic connector. Other connectors include a protective outer shell (528, 860) and a sealing and attachment insert (570, 570A, 876). Other connectors include a protective outer shell (728) and a fastener (780).

    DEPLOYING OPTICAL FIBERS WITHIN A MULTI-DWELLING UNIT

    公开(公告)号:US20180113268A1

    公开(公告)日:2018-04-26

    申请号:US15567913

    申请日:2016-04-22

    Abstract: Example wall outlets include a base; a spool arrangement that mounts to the base; and a cable wound around the spool arrangement at the drum region. The base includes a mounting wall and a sidewall. The base defines a port and defines a first annular perimeter. The spool arrangement is rotatable relative to the base. The spool arrangement includes a drum region, a management region, and an aperture extending between the drum region and the management region. The drum region is enclosed by the sidewall of the base and the management region extends outwardly beyond the base. The cable has a first end extending through the aperture and terminated at a first fiber optic ferrule held at the management region. The cable also has a second end that extends through the port defined in the base and is terminated at a second fiber optic ferrule disposed external of the base.

Patent Agency Ranking