Abstract:
The invention pertains to a system for mounting components to a rack comprising brackets that can be mounted to the rear of the rack through the opening in the front of rack before the component is inserted into the slot and mating sleeves running along the sides of the components. The brackets include arms that extend forwardly towards the front of the slot. After the brackets are attached, the component can be slid into the slot from the front with the sleeves sliding over and engaging the brackets. In this manner, the component can be slid into a slot on the rack with the brackets sliding into the sleeves, thereby providing support for the component along a substantial portion of the depth of the component without the need to bolt or otherwise fixedly attach the component to the bracket after the component is in the rack. Accordingly, a component can be installed in a rack without the need for any access except from the front of the rack.
Abstract:
A module includes a plurality of splitters, a plurality of inputs, and a plurality of outputs wherein the outputs are connected to multi-fiber connectors and wherein outputs from a plurality of splitters are connected to one of the multi-fiber connectors. The splitters have outputs in multiples of eight, such as a 1×32 splitter. The multi-fiber connectors include twelve fiber cables.
Abstract:
The invention pertains to a system for mounting components to a rack comprising brackets that can be mounted to the rear of the rack through the opening in the front of rack before the component is inserted into the slot and mating sleeves running along the sides of the components. The brackets include arms that extend forwardly towards the front of the slot. After the brackets are attached, the component can be slid into the slot from the front with the sleeves sliding over and engaging the brackets. In this manner, the component can be slid into a slot on the rack with the brackets sliding into the sleeves, thereby providing support for the component along a substantial portion of the depth of the component without the need to bolt or otherwise fixedly attach the component to the bracket after the component is in the rack. Accordingly, a component can be installed in a rack without the need for any access except from the front of the rack.
Abstract:
An aggregator for interconnecting a hydra with an breakout box, said aggregator comprising: (a) a bottom wall, two sides walls, and at least one faceplate; (b) adapters for multi-conductor connectors arranged in at least one column on said faceplate; and (c) wherein at least two adapters of each column are secure adapters.
Abstract:
The invention pertains to a system for mounting components to a rack comprising brackets that can be mounted to the rear of the rack through the opening in the front of rack before the component is inserted into the slot and mating sleeves running along the sides of the components. The brackets include arms that extend forwardly towards the front of the slot. After the brackets are attached, the component can be slid into the slot from the front with the sleeves sliding over and engaging the brackets. In this manner, the component can be slid into a slot on the rack with the brackets sliding into the sleeves, thereby providing support for the component along a substantial portion of the depth of the component without the need to bolt or otherwise fixedly attach the component to the bracket after the component is in the rack. Accordingly, a component can be installed in a rack without the need for any access except from the front of the rack.
Abstract:
An aggregator for interconnecting a hydra with an breakout box, said aggregator comprising: (a) a bottom wall, two sides walls, and at least one faceplate; (b) adapters for multi-conductor connectors arranged in at least one column on said faceplate; and (c) wherein at least two adapters of each column are secure adapters.
Abstract:
The invention pertains to a system for mounting components to a rack comprising brackets that can be mounted to the rear of the rack through the opening in the front of rack before the component is inserted into the slot and mating sleeves running along the sides of the components. The brackets include arms that extend forwardly towards the front of the slot. After the brackets are attached, the component can be slid into the slot from the front with the sleeves sliding over and engaging the brackets. In this manner, the component can be slid into a slot on the rack with the brackets sliding into the sleeves, thereby providing support for the component along a substantial portion of the depth of the component without the need to bolt or otherwise fixedly attach the component to the bracket after the component is in the rack. Accordingly, a component can be installed in a rack without the need for any access except from the front of the rack.
Abstract:
An optical splitter/coupler may be disposed at a subscriber network access location to provide primary and back-up service to the subscriber network access location. The optical splitter/coupler includes first and second optical fibers that are optically coupled to a third optical fiber. The first and second optical fibers of the optical splitter/coupler are optically coupled to a service provider location. The third optical fiber is optically coupled to the subscriber network access location.
Abstract:
A connector, a system, and a method provide a single interface at a device for power and optical inputs or outputs. A single interface at the DC source allows for a single connection to the power and optical signals from the splitter. The connector can be used at other locations needing both power and optical signal connectivity.
Abstract:
The invention pertains to a system for mounting components to a rack comprising brackets that can be mounted to the rear of the rack through the opening in the front of rack before the component is inserted into the slot and mating sleeves running along the sides of the components. The brackets include arms that extend forwardly towards the front of the slot. After the brackets are attached, the component can be slid into the slot from the front with the sleeves sliding over and engaging the brackets. In this manner, the component can be slid into a slot on the rack with the brackets sliding into the sleeves, thereby providing support for the component along a substantial portion of the depth of the component without the need to bolt or otherwise fixedly attach the component to the bracket after the component is in the rack. Accordingly, a component can be installed in a rack without the need for any access except from the front of the rack.