Abstract:
The present embodiments provide stent-grafts. In one embodiment, a stent has proximal and distal ends, a plurality of strut segments disposed between the proximal and distal ends that enable expansion of the stent from a compressed state to a deployed state, and a series of distal apices disposed at the distal end of the stent. At least a portion of a first distal apex overlaps with graft material. First and second sutures are each coupled between a portion of the first distal apex and the graft material. The first and second sutures are positioned at different longitudinal zones that lack an axial overlap with one another.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member and disposed within spacing between adjacent turns of the coiled member. Rotation of the cannula subsequently causes the portion of the stent to disengage from the coiled member.
Abstract:
A prosthesis delivery device and method of using the same is described. The delivery device comprises a rotatable inner cannula extending from a proximal end to a distal end with a prosthesis releasably coupled to the proximal end. A delivery handle assembly is disposed at the distal end of the delivery device. The handle comprises a first handle disposed about the inner cannula, a rotary dial rotatably disposed about a distal end of the first handle and a second handle disposed about at least a portion of the distal end of the first handle. The second handle is longitudinally moveable relative to the first handle between a first position wherein the sheath is coaxially disposed about the prosthesis and rotation of the rotary dial is prevented, and a second position wherein the sheath is retracted distally to expose at least a portion of the prosthesis and rotation of the dial is permitted.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member and disposed within spacing between adjacent turns of the coiled member. Rotation of the cannula subsequently causes the portion of the stent to disengage from the coiled member.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member and disposed within spacing between adjacent turns of the coiled member. Rotation of the cannula subsequently causes the portion of the stent to disengage from the coiled member.
Abstract:
The present invention provides apparatus and methods for treating a vascular condition by restoring patency to a vessel while reducing the likelihood that emboli become dislodged into the bloodstream. In a first embodiment, the apparatus comprises a graft having proximal and distal regions, a first support member attached to the distal region of the graft, and a second support member attached to the proximal region of the graft. The first and second support members may comprise first and second stents, respectively. The first stent is deployed distal to a vascular condition, and the second stent is deployed proximal to a vascular condition, such that the graft spans the length of the vascular condition to entrap emboli during treatment of the vascular condition. In an alternative embodiment, the first stent is adapted to be deployed within a vessel at a location distal to the vascular condition, and the graft is adapted to be everted to form a pocket adapted to entrap emboli dislodged during treatment of the vascular condition. The second stent then may be subsequently deployed proximal to the vascular condition, such that emboli trapped within the graft pocket are effectively sealed off from the bloodstream.
Abstract:
The present embodiments provide stent-grafts. In one embodiment, a stent has proximal and distal ends, a plurality of strut segments disposed between the proximal and distal ends that enable expansion of the stent from a compressed state to a deployed state, and a series of distal apices disposed at the distal end of the stent. At least a portion of a first distal apex overlaps with graft material. First and second sutures are each coupled between a portion of the first distal apex and the graft material. The first and second sutures are positioned at different longitudinal zones that lack an axial overlap with one another.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member and disposed within spacing between adjacent turns of the coiled member. Rotation of the cannula subsequently causes the portion of the stent to disengage from the coiled member.
Abstract:
The present embodiments provide systems and methods for deploying at least a portion of a stent. In one embodiment, the system comprises a cannula having an outer surface, and at least one coiled member having proximal and distal ends and a plurality of turns disposed therebetween. One of the proximal and distal ends of the coiled member is secured to the outer surface of the cannula, and the other of the proximal and distal ends of the coiled member is unsecured relative to the outer surface of the cannula. A portion of a stent is looped around the unsecured end of the coiled member and disposed within spacing between adjacent turns of the coiled member. Rotation of the cannula subsequently causes the portion of the stent to disengage from the coiled member.
Abstract:
The present invention provides apparatus and methods for treating a vascular condition by restoring patency to a vessel while reducing the likelihood that emboli become dislodged into the bloodstream. In a first embodiment, the apparatus comprises a graft having proximal and distal regions, a first support member attached to the distal region of the graft, and a second support member attached to the proximal region of the graft. The first and second support members may comprise first and second stents, respectively. The first stent is deployed distal to a vascular condition, and the second stent is deployed proximal to a vascular condition, such that the graft spans the length of the vascular condition to entrap emboli during treatment of the vascular condition. In an alternative embodiment, the graft is adapted to be everted to form a pocket adapted to entrap emboli dislodged during treatment of the vascular condition.