Abstract:
A system for processing an optical fiber includes: a draw furnace, the draw furnace containing an optical fiber preform; a bare optical fiber drawn from the optical fiber preform, the bare optical fiber extending from the draw furnace along a process pathway; and a slow cooling device operatively coupled to and downstream from the draw furnace, the slow cooling device exposing the bare optical fiber to a slow cooling device process temperature in the range from 1000° C. to 1400° C., wherein the bare optical fiber passes through the slow cooling device at least two times.
Abstract:
A method of processing an optical fiber includes drawing the optical fiber from a heated glass source, reheating the optical fiber, and cooling the optical fiber under vacuum at a cooling rate less than the cooling rate of the optical fiber in air at 25° C. and 1 atm. Cooling the optical fiber under vacuum is conducted after reheating the optical fiber. Cooling the optical fiber under vacuum reduces the rate of heat transfer from the optical fiber, which may enable further relaxation of the glass and reduction in the fictive temperature of the optical fiber. A system for processing an optical fiber includes a furnace containing a fiber preform, a first positioner, a reheating device, and a treatment device downstream of the reheating device, the treatment device operable to cool the optical fiber under vacuum to reduce the rate of heat transfer from the optical fiber.
Abstract:
An optical fiber production system is provided which includes a slow-cooling device and a purge device positioned above the slow-cooling device. The purge device includes a tube defining an inlet. An optical fiber extends through the slow-cooling device and the purge device. The purge device is configured to inject a purge gas through the inlet and against the optical fiber.
Abstract:
An optical fiber with low attenuation is provided. The fiber is produced under conditions that reduce fictive temperature. Processing includes maintaining the fiber at temperatures at or near the glass transition temperature (Tg) for an extended period of time. For silica-based fibers, the preferred temperatures are temperatures between 1000° C. and 1700° C. The extended residence times are achieved in a continuous fiber manufacturing process by increasing the path length of the fiber through a processing region maintained at temperatures between 1000° C. and 1700° C. The increased path length is achieved by including one or more fluid bearing devices in the processing region. The extended residence time in the processing region allows the structure of the glass fiber to relax more completely and to more closely approach the equilibrium state. The more relaxed glass structure leads to a lower fictive temperature and provides fibers with lower attenuation.
Abstract:
An optical fiber with low attenuation is provided. The fiber is produced under conditions that reduce fictive temperature. Processing includes maintaining the fiber at temperatures at or near the glass transition temperature (Tg) for an extended period of time. For silica-based fibers, the preferred temperatures are temperatures between 1000° C. and 1700° C. The extended residence times are achieved in a continuous fiber manufacturing process by increasing the path length of the fiber through a processing region maintained at temperatures between 1000° C. and 1700° C. The increased path length is achieved by including one or more fluid bearing devices in the processing region. The extended residence time in the processing region allows the structure of the glass fiber to relax more completely and to more closely approach the equilibrium state. The more relaxed glass structure leads to a lower fictive temperature and provides fibers with lower attenuation.
Abstract:
In one embodiment, an apparatus for screen testing an optical fiber includes a fiber conveyance pathway, a capstan having an outer circumference and a fiber contact region extending around the outer circumference, the fiber contact region having a durometer hardness of less than or equal to about 40 Shore A, where the capstan is positioned adjacent to the fiber conveyance pathway such that when the optical fiber is directed over the fiber conveyance pathway, the optical fiber engages with the fiber contact region, and a pinch belt positioned adjacent to the fiber conveyance pathway such that the fiber conveyance pathway extends between the pinch belt and the fiber contact region, where the pinch belt is engagable with the fiber contact region such that, when the optical fiber is directed over the fiber conveyance pathway, the optical fiber is impinged between the pinch belt and the fiber contact region.
Abstract:
A method of forming an optical fiber, the method including heating a forming region of the optical fiber preform within a pressure device while exposing the forming region to a total pressure of about 500 atm or greater, directing the optical fiber preform in a downstream direction along a process pathway to form the optical fiber, and traversing the optical fiber through an aperture of a nozzle to maintain the total pressure of about 500 atm or greater within the pressure device.
Abstract:
A method of processing an optical fiber includes drawing the optical fiber from a heated glass source, reheating the optical fiber, and cooling the optical fiber under vacuum at a cooling rate less than the cooling rate of the optical fiber in air at 25° C. and 1 atm. Cooling the optical fiber under vacuum is conducted after reheating the optical fiber. Cooling the optical fiber under vacuum reduces the rate of heat transfer from the optical fiber, which may enable further relaxation of the glass and reduction in the fictive temperature of the optical fiber. A system for processing an optical fiber includes a furnace containing a fiber preform, a first positioner, a reheating device, and a treatment device downstream of the reheating device, the treatment device operable to cool the optical fiber under vacuum to reduce the rate of heat transfer from the optical fiber.
Abstract:
An optical fiber with low fictive temperature along with a system and method for making the optical fiber are provided. The system includes a reheating stage that heats the fiber along the process pathway to a temperature sufficient to lower the fictive temperature of the fiber by relaxing the glass structure and/or driving the glass toward a more nearly equilibrium state. The fiber is drawn from a preform, conveyed along a process pathway, cooled and subsequently reheated to increase the time of exposure of the fiber to temperatures conducive to lowering the fictive temperature of the fiber. The process pathway may include multiple reheating stages as well as one or more fiber-turning devices.
Abstract:
In one embodiment, an apparatus for screen testing an optical fiber includes a fiber conveyance pathway, a capstan having an outer circumference and a fiber contact region extending around the outer circumference, the fiber contact region having a durometer hardness of less than or equal to about 40 Shore A, where the capstan is positioned adjacent to the fiber conveyance pathway such that when the optical fiber is directed over the fiber conveyance pathway, the optical fiber engages with the fiber contact region, and a pinch belt positioned adjacent to the fiber conveyance pathway such that the fiber conveyance pathway extends between the pinch belt and the fiber contact region, where the pinch belt is engagable with the fiber contact region such that, when the optical fiber is directed over the fiber conveyance pathway, the optical fiber is impinged between the pinch belt and the fiber contact region.